spfa最短路算法

spfa最短路算法

概述

  1. SPFA算法的全称是:Shortest Path Faster Algorithm
  2. 为了避免最坏情况的出现,在正权图上应使用效率更高的Dijkstra算法。若给定的图存在负权边,类似Dijkstra算法等算法便没有了用武之地,SPFA算法便派上用场了。
  3. 定理:只要最短路径存在,上述SPFA算法必定能求出最小值。证明:每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。

算法原理与应用

原理解析

简洁起见,我们约定加权有向图G不存在负权回路,即最短路径一定存在。用数组d记录每个结点的最短路径估计值,而且用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。

应用

  1. 求带负权边的最短路
  2. 判断是有负环:如果一个点进入队列达到n次,则表明图中存在负环,没有最短路径。

例题

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。

数据保证不存在负权回路。

输入格式
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 impossible。

数据范围
1≤n,m≤10^5,
图中涉及边长绝对值均不超过 10000。

输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2

import collections
N = 100010
M = 10000010
h = [-1] * N
e = [-1] * N
w = [M] * N
ne = [-1] * N
idx = 0
dist = [M] * N
st = [False] * N

def add(a, b, c) :
	global idx
	e[idx] = b
	w[idx] = c
	ne[idx] = h[a]
	h[a] = idx
	idx += 1
	
def spfa() :
	que = collections.deque()
	dist[1] = 0
	que.appendleft(1)
	st[1] = True
	while len(que) != 0 :
		t = que.pop()
		st[t] = False
		i = h[t] 
		while i != -1 :
			j = e[i]
			if dist[j] > dist[t] + w[i] :
				dist[j] = dist[t] + w[i]
				if not st[j] :
					st[j] = True
					que.appendleft(j)
			i = ne[i]
	if dist[n] >= M :
		return False
	else :
		return True
	
n, m = map(int, input())

for i in range(m) :
	x, y, z = map(int, input())
	add(x, y, z)

if not spfa() :
	print("impossible")
else :
	print(dist[n])

这里st数组的意义在于记录节点是否已经进入队列,防止重复加入队列,计算重复。
在某种意义上讲是一个BFS

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你判断图中是否存在负权回路。

输入格式
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。

数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。

输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes
难度:简单
时/空限制:1s / 64MB

import collections
N = 2010
M = 10010
h = [-1] * N
e = [-1] * N
w = [-1] * N
ne = [-1] * N
idx = 1
dist = [M] * N
cnt = [0] * N
st = [False] * N

def add(a, b, c) :
	global idx
	e[idx] = b
	w[idx] = c
	ne[idx] = h[a]
	h[a] = idx
	idx += 1

def spfa() :
	que = collections.deque()
	for i in range(1, n + 1) :
		que.appendleft(i)
		st[i] = True
	while len(que) != 0 :
		t = que.pop()
		st[t] = False
		i = h[t]
		while i != -1 :
			j = e[i]
			if dist[j] > dist[t] + w[i] :
				dist[j] = dist[t] + w[i]
				cnt[j] = cnt[t] + 1
				if cnt[j] >= n :#只要最短路能更新超过n次,则说明有负环
					return True
				if not st[j] :
					st[j] = True
					que.appendleft(j)
			i = ne[i]
	return False

n, m = map(int, input().split())

for i in range(m) :
	a, b, c = map(int, input().split())
	add(a, b, c)

if spfa() :
	print("Yes")
else :
	print("No") 

小结
判断是否有负环与求最短路的spfa的区别是,刚开始对dist初始化和入队的节点。
刚开始需要让所有节点入队,对每个节点更新到某个起始结点的距离,dist表示到那个距离无所谓,只需要记录其更新了n次即可说明存在负环。

总结

spfa是对Bellma-Ford算法的优化,通过一个队列,每次更新队列中节点的距离,通过一个st数组记录队列中的元素是否存在,避免重复添加。在判断负环时,通过一个cnt数组来记录每个节点松弛操作次数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值