Spark 算子

文章详细介绍了Spark中的RDD算子,包括Transformation算子如map、filter、groupBy等,以及Action算子如reduce、collect、save。Transformation算子是延迟执行的,而Action算子触发实际计算。此外,还讨论了不同类型的算子,如Value类型、双Value类型和K-V类型算子的功能和用法。
摘要由CSDN通过智能技术生成

目录

什么是Spark rdd算子

算子的分类

Transformation算子

Action算子

转换算子

Value类型

map

mapPartitions

mapPartitionsWithIndex

glom

groupBy

filter

sample

distinct

coalesce

sortBy

双Value类型

intersection

union

subtract

zip

K-V类型

partitionBy

reduceByKey

groupByKey

aggregateByKey

foldByKey

combineByKey

join

sortByKey

mapValues

cogroup

行动算子

reduce

collect

count

first

take

takeOrdered

aggregate

fold

countByValue

countByKey

foreach

save


什么是Spark rdd算子

算子:分布式对象上的API称之为算子

方法\函数:本地对象的API,叫做方法\函数

算子:分布式对象的API,叫做算子

算子的分类

rdd算子分为两类

  • Transformation:转换算子
  • Action:动作(行动)算子

Transformation算子

定义:RDD的算子,返回值仍旧是一个RDD的,称之为转换算子。
特征:这类算子是lazy 懒加载的,如果没有Action算子,Transformation算子是不工作的。

转换算子分为:Value类型、双Value类型和K-V类型。

Action算子

定义:返回值不是rdd的就是action算子。

对于这两类算子来说,Transformation算子,相当于在构建执行计划,action是一个指令让这个执行计划开始工作。如果没有action,Transformation算子之间的迭代关系,就是一个没有通电的流水线,只有action到来,这个数据处理流水线才开始工作。

转换算子

Value类型

map

将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。

 val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(
      List(1, 2, 3, 4)
    )
    val mapRDD = rdd.map(_ * 2)
    mapRDD.collect().foreach(println)
    /**
     * 2
     * 4
     * 6
     * 8
     * */

mapPartitions

以分区为单位对数据进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。

  val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(
      List(1, 2, 3, 4), 2
    )
    val mapRDD = rdd.mapPartitions(datas => datas.map(_ * 2))
    mapRDD.collect().foreach(println)

    /** *
     * 2
     * 4
     * 6
     * 8
     */

TIP:

1、会将整个分区的数据加载到内存,如果处理完不被释放,在内存较小并且数据量较大的情况下,容易出现内存溢出(OOM)

2、可以实现一些特殊功能,比如取每个分区中最大值,map无法实现

mapPartitionsWithIndex

类似于mapPartitions,比mapPartitions多一个参数来表示分区号

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(
      List(List(1, 2), List(3, 4))
    )
    val fmRDD = rdd.flatMap(
      list => {
        list
      }
    )
    fmRDD.collect().foreach(println)

    /**
     * 1
     * 2
     * 3
     * 4
     * */

当集合中的数据类型不同时,可以使用match case进行模式匹配,转换成集合类型。

val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
val rdd = sc.makeRDD(
    List(List(1, 2),3, List(3, 4))
)
val fmRDD = rdd.flatMap {
    case list: List[_] => list
    case d => List(d)
}
fmRDD.collect().foreach(println)
    /**
     * 1
     * 2
     * 3
     * 3
     * 4
     * */

glom

将RDD中每一个分区变成一个数组,数组中元素类型与原分区中元素类型一致。

  val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(
      List(1, 2, 3, 4), 2
    )
    val gRDD = rdd.glom()
    gRDD.collect().foreach(data => println(data.mkString(",")))

    /**
     * 1,2
     * 3,4
     * */

groupBy

根据指定的规则进行分组,分区默认不变,数据会被打乱(shuffle)。极限情况下,数据可能会被分到同一个分区中。一个分区可以有多个组,一个组只能在一个分区中。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(
      List(1, 2, 3, 4), 2
    )

    // groupBy 会将数据源中的每一个数据进行分组判断,根据返回的分组key进行分组,相同的key值的数据会被放置在一个组中
    def groupFunction(num: Int): Int = {
      num % 2
    }

    val groupRDD = rdd.groupBy(groupFunction)
    groupRDD.collect().foreach(println)

    /**
     * (0,CompactBuffer(2, 4))
     * (1,CompactBuffer(1, 3))
     */

filter

根据指定的规则进行筛选过滤,符合规则的数据保留,不符合的丢弃。

当数据进行筛选过滤后,分区不变,但是分区内数据可能不均衡,导致数据倾斜。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(
      List(1, 2, 3, 4), 2
    )
    val filterRDD = rdd.filter(_ % 2 == 1)
    filterRDD.collect().foreach(println)

    /**
     * 1
     * 3
     * */

sample

根据指定规则从数据集中采样数据。通过它可以找到数据倾斜的key。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(
      List(1, 2, 3, 4), 2
    )
    println(rdd.sample(
      true,
      2
    ).collect().mkString((",")))

    /**
     *1,1,2,3,3,4,4
     * */

distinct

将数据集中的数据去重。使用分布式处理方式实现,与内存集合使用HashSet去重方式不同。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(
      List(1, 2, 3, 4, 2, 3, 1), 2
    )
    val distinctRDD = rdd.distinct()
    distinctRDD.collect().foreach(println)

    /**
     * 4
     * 2
     * 1
     * 3
     * */

coalesce

根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率。

当Spark程序中存在过多的小任务时,可以通过coalesce合并分区,减少分区个数,进而减少任务调度成本。

 val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(
      List(1, 2, 3, 4, 5, 6), 3
    )
    // 无shuffle
    val coaRDD = rdd.coalesce(2)
    // 有shuffle
    coaRDD.saveAsTextFile("output1")

TIP:

1、coalesce默认不会将分区数据打乱重新组合,这种情况会导致数据不均衡,出现数据倾斜

2、可以设置第二个参数为true,进行shuffle处理,让数据均衡

3、扩大分区时,可以使用coalesce(,true)或者repartition

sortBy

根据指定规则进行排序,默认升序,设置第二个参数改变排序方式。

默认情况下,不会改变分区个数,但是中间存在shuffle处理。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(
      List(4, 5, 1, 3, 2, 6), 2
    )
    val sortRDD = rdd.sortBy(num => num)
    sortRDD.saveAsTextFile("output")

 

双Value类型

intersection

两个RDD求交集

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val one: RDD[Int] = sc.parallelize(Array(1, 2, 3, 4, 5))
    val two: RDD[Int] = sc.parallelize(Array(1, 2, 4, 9, 8))
    val value: RDD[Int] = one.intersection(two)
    value.collect().foreach(println)

    /**
     * 1
     * 2
     * 4
     * */

union

两个RDD求并集

只是合并不去重,要想去重可以使用 distinct 算子进行去重

 val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val one: RDD[Int] = sc.parallelize(Array(1, 2, 3, 4, 5))
    val two: RDD[Int] = sc.parallelize(Array(1, 2, 4, 9, 8))
    val value: RDD[Int] = one.union(two)
    value.collect().foreach(x => print(x + " "))

    /**
     *1 2 3 4 5 1 2 4 9 8 
     * */

subtract

两个RDD求差集,

拉链, 对应位置一对一映射,组成(key,value),需要每个对应分区上的数据个数相同

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val one: RDD[Int] = sc.parallelize(Array(1, 2, 3, 4, 5))
    val two: RDD[Int] = sc.parallelize(Array(1, 2, 4, 9, 8))
    val value: RDD[Int] = one.subtract(two)
    value.collect().foreach(x => print(x + " "))

    /**
     * 3 5
     * */

zip

拉链操作,以键值对的形式进行合并。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd1 = sc.makeRDD(List(1, 2, 3, 4))
    val rdd2 = sc.makeRDD(List(3, 4, 5, 6))
    val newRDD = rdd1.zip(rdd2)
    println(newRDD.collect().mkString(","))

    /**
     * (1,3),(2,4),(3,5),(4,6)
     * */

TIP:

1、intersection,union和subtract要求两个RDD中的数据类型保持一致

2、zip:不要求两个RDD中的数据类型保持一致,但要求分区个数以及对应分区上的数据个数保持一致

K-V类型

partitionBy

将数据按照指定artitioner重新进行分区,默认的分区器是HashPartitioner。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(List(1, 2, 3, 4), 2)
    val newRDD: RDD[(Int, Int)] = rdd.map((_, 1))
    // partitionBy 根据指定的分区规则对数据进行重分区
    newRDD.partitionBy(new HashPartitioner(2))
      .saveAsTextFile("output")

reduceByKey

将数据按照相同的key对value进行聚合。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(List(("a", 1), ("a", 2), ("a", 3), ("b", 2)))
    // reduceByKey 相同的Key的数据进行value数据的聚合操作
    // scala 语言中一般的聚合都是两两聚合,spark基于scala开发的,所以它的聚合也是两两聚合的
    // reduceByKey 中如果key的数据只有一个,是不会参与运算的。
    val reduceRDD = rdd.reduceByKey(_ + _)
    reduceRDD.collect().foreach(println)

    /**
     * (a,6)
     * (b,2)
     * */

groupByKey

将数据按照相同的key对value进行分组,形成一个对偶元祖。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(List(("a", 1), ("a", 2), ("a", 3), ("b", 2)))
    // groupByKey : 将数据源中的数据,相同的key的数据分到一个组中,形成一个对偶元组
    // 元组中的第一个元素就是key,第二个元素就是相同key的value集合
    val groupRDD = rdd.groupByKey()
    groupRDD.collect().foreach(println)

    /**
     * (a,CompactBuffer(1, 2, 3))
     * (b,CompactBuffer(2))
     * */

aggregateByKey

根据不同的规则进行分区内计算和分区间计算。

   val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(List(("a", 1), ("a", 2), ("a", 3), ("a", 4)), 2)
    // 分区内和分区间的计算规则可以不同,也可以相同
    rdd.aggregateByKey(0)(
      (x, y) => math.max(x, y),
      (x, y) => x + y
    ).collect().foreach(println)


    /**
     * (a,6)
     * */

foldByKey

aggregateByKey的简化操作,分区内和分区间的计算规则一样

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(List(("a", 1), ("a", 2), ("a", 3), ("a", 4)), 2)

    // 分区内和分区间的计算规则可以相同
    //   rdd.aggregateByKey(0)(
    //     (x,y) => x + y,
    //     (x,y) => x + y
    //   ).collect().foreach(println)

    // 可以使用foldByKey来简化
    rdd.foldByKey(0)(_ + _).collect().foreach(println)

    /**
     *(a,10)
     * */

combineByKey

针对相同K,将V合并成一个集合。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(List(("a", 1), ("a", 2), ("b", 3),
      ("b", 4), ("b", 5), ("a", 6)), 2)
    // 获取相同key的数据的平均值 => (a,3) (b,4)
    // combineByKey 需要三个参数
    // 第一个参数表示:将相同key的第一个数据进行数据结构的转换,实现操作
    // 第二个参数表示:分区内的计算规则
    // 第三个参数表示:分区间的计算规则
    val newRDD = rdd.combineByKey(
      v => (v, 1), // 转换为 tuple是在运行当中动态得到的,所以下面的tuple需要添加数据类型
      (t: (Int, Int), v) => {(t._1 + v, t._2 + 1)},
      (t1: (Int, Int), t2: (Int, Int)) => {(t1._1 + t2._1, t1._2 + t2._2)})
    val resultRDD = newRDD.mapValues {
      case (sum, cnt) => sum / cnt
    }
    resultRDD.collect().foreach(println)

    /**
     * (b,4)
     * (a,3)
     * */

join

在类型为(K,V)和(K,W)的RDD上调用,返回一个相同的key对应的所有元素连接在一起的(K,(V,W))的RDD。

val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(List(("a", 1), ("b", 2), ("c", 3), ("d", 4)))
    val rdd2 = sc.makeRDD(List(("a", 5), ("a", 6), ("e", 8), ("c", 7)))
    // join : 两个不同数据源的数据,相同的key的value会连接在一起,形成元组。
    //  如果两个数据源中key没有匹配上,那么数据不会出现在结果中。
    //  如果两个数据源中key有多个相同的,会依次匹配,可能会出现笛卡尔积,数据量会几何性增长,会导致性能降低
    rdd.join(rdd2).collect().foreach(println)

    /** (a,(1,5))
     * (a,(1,6))
     * (c,(3,7)) */

sortByKey

在一个(K,V)的RDD上调用,K必须实现ordered接口,返回一个按照key进行排序的(K,V)的RDD

val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(List(("a", 1), ("b", 2), ("c", 3), ("d", 4)))
    //按照key对rdd中的元素进行排序,默认升序
    rdd.sortByKey().collect().foreach(println)
    //降序
    println("----------")
    rdd.sortByKey(false).collect().foreach(println)

    /**
     * (a,1)
     * (b,2)
     * (c,3)
     * (d,4)
     * ----------
     * (d,4)
     * (c,3)
     * (b,2)
     * (a,1)
     * */

mapValues

针对于(K,V)形式的类型只对V进行操作

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(List(("a", 1), ("b", 2), ("c", 3), ("d", 4)))
    rdd.mapValues("pre_" + _).collect().foreach(println)

    /**
     * (a,pre_1)
     * (b,pre_2)
     * (c,pre_3)
     * (d,pre_4)
     * */

cogroup

相同的key,value分组后连接起来。

    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("Operator"))
    val rdd = sc.makeRDD(List(("a", 1), ("b", 2), ("c", 3), ("d", 4)))
    val rdd2 = sc.makeRDD(List(("a", 5), ("a", 6), ("e", 8), ("c", 7)))
    // cogroup : connect + group (分组,连接)
    // 可以有多个参数
    rdd.cogroup(rdd2).collect().foreach(println)

    /** *
     * (a,(CompactBuffer(1),CompactBuffer(5, 6)))
     * (b,(CompactBuffer(2),CompactBuffer()))
     * (c,(CompactBuffer(3),CompactBuffer(7)))
     * (d,(CompactBuffer(4),CompactBuffer()))
     * (e,(CompactBuffer(),CompactBuffer(8)))
     * */

行动算子

行动算子,其实就是触发作业执行的方法
底层代码调用的是环境对象中 runJob 方法,调用dagScheduler的runJob方法创建ActiveJob,并提交执行。

reduce

聚合RDD中的所有数据,先聚合分区内数据,在聚合分区间数据。

    val conf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1, 2, 3, 4, 5))
    val i = rdd.reduce(_ + _)
    println(i)

    /**
     * 15
     * */

 

 

collect

采集,该方法会将不同分区间的数据按照分区顺序采集到Driver端,形成数组。

 val conf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1, 2, 3, 4, 5))
    val ints = rdd.collect()
    ints.foreach(println)

    /**
     * 1
     * 2
     * 3
     * 4
     * 5
     * */

count

统计数据个数。

   val conf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1, 2, 3, 4, 5))
    val l = rdd.count()
    println(l)

    /**
     * 5
     * */

first

获取RDD中的第一个元素。

    val conf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1, 2, 3, 4, 5))
    val i = rdd.first()
    println(i)

    /**
     * 1
     * */

take

获取RDD前n个元素组成的数组。

    val conf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1, 2, 3, 4, 5))
    val ints = rdd.take(2)
    println(ints.mkString(","))

    /**
     * 1,2
     * */

takeOrdered

获取RDD排序后的前n个元素组成的数组

    val conf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(List(1, 2, 3, 4, 5))
    val rdd1 = sc.makeRDD(List(4, 3, 2, 1))
    val ints1 = rdd1.takeOrdered(2)
    println(ints1.mkString(","))

    /**
     * 1,2
     * */

aggregate

将每个分区里面的元素通过分区内逻辑和初始值进行聚合,然后用分区间逻辑和初始值(zeroValue)进行操作。注意:分区间逻辑再次使用初始值和aggregateByKey是有区别的。

fold

折叠操作,aggregate的简化操作,分区内逻辑和分区间逻辑相同。

  val conf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(conf)
    val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4), 8)
    println(rdd.aggregate(10)(_ + _, _ + _))
    println("-----------")
    //fold 是aggregate的简化版
    println(rdd.fold(10)(_ + _))

    /**
     * 100
     * -----------
     * 100
     * */

countByValue

统计每个value的个数

countByKey

统计每种key的个数。

​
    val conf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(conf)
    val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (1, "a"), (1, "a"), (2, "b"), (3, "c"), (3, "c")))
    println(rdd.countByKey())
    val intToLong = rdd.countByValue()
    println(intToLong)

    /**
     * Map(1 -> 3, 2 -> 1, 3 -> 2)
     * Map((3,c) -> 2, (1,a) -> 3, (2,b) -> 1)
     * */

​

foreach

遍历RDD中每一个元素。

    val conf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(conf)
    val value: RDD[Int] = sc.parallelize(Array(1, 2, 3, 4))
    value.collect().foreach(println)

    /**
     * 1
     * 2
     * 3
     * 4
     * */

save

(1)saveAsTextFile(path)保存成Text文件
(2)saveAsSequenceFile(path) 保存成Sequencefile文件
(3)saveAsObjectFile(path) 序列化成对象保存到文件

    val conf = new SparkConf().setMaster("local[*]").setAppName("Operator")
    val sc = new SparkContext(conf)

    val rdd = sc.makeRDD(List(("a", 1), ("a", 2), ("a", 3), ("b", 4)), 2)
    rdd.saveAsTextFile("output")
    rdd.saveAsObjectFile("output1")
    //    saveAsSequenceFile 方法要求数据的格式必须为 K - V 键值对类型
    rdd.saveAsSequenceFile("output2")

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值