基于模型融合的分类网络设计(使用tensorflow/keras实现)
前言
融合模型的设计原理类似于集成学习,集成学习是将几个弱学习器集成得到强学习器,这里的弱学习器不是指准确率低的分类模型,而是子模型之间的多样性差异。在特征提取的过程中,两个深度学习模型的多样性差异指的就是模型在 结构、样本、超参数、特征提取等方面的不同而带来的随机性差异。子模型的多样性差异越大,融合后的模型在同样的数据条件下可以获得的表述信息就越多, 可判断类别的选择信息面就越广,泛化能力就越强[33~35]。模型融合是一种简单、 粗暴且高效率的方法,在 kaggle、天池等深度学习的国际比赛中可以看到
原创
2022-05-02 21:35:06 ·
1714 阅读 ·
1 评论