红黑树详解

红黑树

红黑树的概念

红黑树 ,是一种 二叉搜索树 ,但 在每个结点上增加一个存储位表示结点的颜色,可以是 Red Black 。 通过 对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩 ,因而是 接近平衡 的。

 红黑树的性质

1. 每个结点不是红色就是黑色
2. 根节点是黑色的 
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点 
5. 每个叶子结点都是黑色的 ( 此处的叶子结点指的是空结点 )

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两 倍?
        答:假设一条路径黑色节点为H,那么多短路径就是H,最长路径为2H,大佬就是大佬,也不知怎么想出来的。

红黑树节点的定义

enum Colour
{
	RED,
	BLACK
};
template<class K,class V>
class RBTreeNode
{
public:
	RBTreeNode(const std::pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_col(RED)
	{

	}
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	std::pair<K, V> _kv;
	Colour _col;
};
思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?
       答:节点定义成红色是为了方便处理。

红黑树结构

为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了与根节点进 行区分,将头结点给成黑色,并且让头结点的 Parent 域指向红黑树的根节点, Left 域指向红黑树中最小的 节点,Right 域指向红黑树中最大的节点,如下:

红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点

template<class K,class V>
class RBTree
{
public:
	typedef RBTreeNode<K, V> Node;
	RBTree()
		:_root(nullptr)
	{

	}
	bool insert(const std::pair<K,V> &kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur != nullptr)
		{
			if (kv.first > cur->_kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kv.first < cur->_kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		//新增节点
		cur = new Node(kv);
		cur->_col = RED;
		if (kv.first > parent->_kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
}

 2. 检测新节点插入后,红黑树的性质是否造到破坏

因为 新节点的默认颜色是红色 ,因此:如果 其双亲节点的颜色是黑色,没有违反红黑树任何性质 ,则不 需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点 ,此 时需要对红黑树分情况来讨论:
约定 :cur 为当前节点, p 为父节点, g 为祖父节点, u 为叔叔节点

情况一: cur为红,p为红,g为黑,u存在且为红

 解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整

情况二: cur为红,p为红,g为黑,u不存在/u为黑

 说明:u的情况右两种

1.如果u节点不存在,则cur一定是新插入的节点,如果cur不是新插入节点,则cur和p一定有一个节点的颜色是黑色,就不满足性质4,每条路径黑色节点的个数相同。

2.如果u节点存在,则其一定是黑色,那么cur节点原来的颜色也一定是黑色的,现在看到其是红色的原因因为cur的子树在调整过程中将cur的颜色由黑色变成红色的。

p为g的左孩子,cur为p的左孩子,则进行右单旋

p为g的右孩子,cur为p的右孩子,则进行左单旋

p,g变色 --p变黑,g变红。

情况3.cur为红,p为红,g为黑,u不存在/u为黑

p g 的左孩子, cur p 的右孩子,则针对 p 做左单旋转;相反,
p g 的右孩子, cur p 的左孩子,则针对 p 做右单旋转
则转换成了情况 2
//控制平衡
		while (parent != nullptr && parent->_col == RED)  //如果父亲存在并且父亲的节点为红色
		{
			Node* grandfather = parent->_parent;
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				//情况1 :叔叔节点存在且叔叔节点颜色为红
				if (uncle != nullptr && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;  //父亲节点和叔叔节点变黑
					grandfather->_col = RED;
					
					//grandfather可能不是根节点,继续往上更新
					cur = grandfather;
					parent = cur->_parent;
				}
				else //情况2 + 3,uncle不存在 / 存在且为黑    可能是由情况1 -> 情况2 / 情况 3
				{
					//        g
					//      p
					//    c
					if (cur == parent->_left)   
					{
						//右单旋
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//触发左右双旋
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;
				//情况1: uncle 存在且 uncle的颜色为红
				if (uncle != nullptr && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;  //叔叔和父亲变色
					grandfather->_col = RED;

					//grandfather可能不是根节点,所以可能一直往上更新
					cur = grandfather;
					parent = cur->_parent;
				}
				else  //情况2 + 3 ,uncle不存在 / 存在且为黑
				{
					if (cur == parent->_right)  //触发左旋
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else  
					{
						//触发右左双旋
						RotateR(parent);
						RotateL(grandfather);
						grandfather->_col = RED;
						cur->_col = BLACK;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return true;
	}

旋转代码:

void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node* parentparent = parent->_parent;

		parent->_left = subLR;
		if (subLR != nullptr)
		{
			subLR->_parent = parent;
		}
		subL->_right = parent;
		parent->_parent = subL;
		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentparent->_left == parent)
				parentparent->_left = subL;
			else
				parentparent->_right = subL;
			subL->_parent = parentparent;
		}
	}
	void RotateL(Node* parent)
	{
		
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* parentparent = parent->_parent;

		parent->_right = subRL;
		if (subRL != nullptr)
			subRL->_parent = parent;

		subR->_left = parent;
		parent->_parent = subR;
		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parentparent->_left == parent)
				parentparent->_left = subR;
			else
				parentparent->_right = subR;

			subR->_parent = parentparent;
		}
	}

红黑树的验证

红黑树的检测分为两步:
1. 检测其是否满足二叉搜索树 ( 中序遍历是否为有序序列 )
2. 检测其是否满足红黑树的性质
bool IsBalance()
	{
		if (_root && _root->_col == RED)
		{
			std::cout << "根节点不是黑色" << std::endl;
			return false;
		}

		// 最左路径黑色节点数量做基准值
		int banchmark = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
				++banchmark;

			left = left->_left;
		}

		int blackNum = 0;
		return _IsBalance(_root, banchmark, blackNum);
	}

	bool _IsBalance(Node* root, int banchmark, int blackNum)
	{
		if (root == nullptr)
		{
			if (banchmark != blackNum)
			{
				std::cout << "存在路径黑色节点的数量不相等" << std::endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			std::cout << "出现连续红色节点" << std::endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		return _IsBalance(root->_left, banchmark, blackNum)
			&& _IsBalance(root->_right, banchmark, blackNum);
	}

红黑树的删除

红黑树的删除本节不做讲解,有兴趣的同学可参考:《算法导论》或者《 STL 源码剖析》
http://www.cnblogs.com/fornever/archive/2011/12/02/2270692.html
http://blog.csdn.net/chenhuajie123/article/details/11951777

红黑树与AVL树的比较

红黑树和 AVL 树都是高效的平衡二叉树,增删改查的时间复杂度都是 O(log2 N  ) ,红黑树不追求绝对平衡,其 只需保证最长路径不超过最短路径的 2 倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构 中性能比 AVL 树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

红黑树的应用

1. C++ STL -- map/set mutil_map/mutil_set
2. Java
3. linux 内核
4. 其他一些库
http://www.cnblogs.com/yangecnu/p/Introduce-Red-Black-Tree.html
红黑树全部代码:
RBTree.h
#pragma once
#include<iostream>
enum Colour
{
	RED,
	BLACK
};
template<class K,class V>
class RBTreeNode
{
public:
	RBTreeNode(const std::pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_col(RED)
	{

	}
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	std::pair<K, V> _kv;
	Colour _col;
};

template<class K,class V>
class RBTree
{
public:
	typedef RBTreeNode<K, V> Node;
	RBTree()
		:_root(nullptr)
	{

	}
	bool insert(const std::pair<K,V> &kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur != nullptr)
		{
			if (kv.first > cur->_kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kv.first < cur->_kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		//新增节点
		cur = new Node(kv);
		cur->_col = RED;
		if (kv.first > parent->_kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		//控制平衡
		while (parent != nullptr && parent->_col == RED)  //如果父亲存在并且父亲的节点为红色
		{
			Node* grandfather = parent->_parent;
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				//情况1 :叔叔节点存在且叔叔节点颜色为红
				if (uncle != nullptr && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;  //父亲节点和叔叔节点变黑
					grandfather->_col = RED;
					
					//grandfather可能不是根节点,继续往上更新
					cur = grandfather;
					parent = cur->_parent;
				}
				else //情况2 + 3,uncle不存在 / 存在且为黑    可能是由情况1 -> 情况2 / 情况 3
				{
					//        g
					//      p
					//    c
					if (cur == parent->_left)   
					{
						//右单旋
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//触发左右双旋
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;
				//情况1: uncle 存在且 uncle的颜色为红
				if (uncle != nullptr && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;  //叔叔和父亲变色
					grandfather->_col = RED;

					//grandfather可能不是根节点,所以可能一直往上更新
					cur = grandfather;
					parent = cur->_parent;
				}
				else  //情况2 + 3 ,uncle不存在 / 存在且为黑
				{
					if (cur == parent->_right)  //触发左旋
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else  
					{
						//触发右左双旋
						RotateR(parent);
						RotateL(grandfather);
						grandfather->_col = RED;
						cur->_col = BLACK;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return true;
	}
private:
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node* parentparent = parent->_parent;

		parent->_left = subLR;
		if (subLR != nullptr)
		{
			subLR->_parent = parent;
		}
		subL->_right = parent;
		parent->_parent = subL;
		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentparent->_left == parent)
				parentparent->_left = subL;
			else
				parentparent->_right = subL;
			subL->_parent = parentparent;
		}
	}
	void RotateL(Node* parent)
	{
		
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* parentparent = parent->_parent;

		parent->_right = subRL;
		if (subRL != nullptr)
			subRL->_parent = parent;

		subR->_left = parent;
		parent->_parent = subR;
		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parentparent->_left == parent)
				parentparent->_left = subR;
			else
				parentparent->_right = subR;

			subR->_parent = parentparent;
		}
	}
public:
	void inoder()
	{
		Node* cur = _root;
		Node* MostRight = nullptr;
		while (cur != nullptr)
		{
			MostRight = cur->_left;
			if (MostRight != nullptr)
			{
				while (MostRight->_right != nullptr && MostRight->_right != cur)
				{
					MostRight = MostRight->_right;
				}
				if (MostRight->_right == nullptr)
				{
					MostRight->_right = cur;
					cur = cur->_left;
					continue;
				}
				else
				{
					MostRight->_right = nullptr;
				}
			}
			std::cout << cur->_kv.first << ":" << cur->_kv.second << std::endl;
			cur = cur->_right;
		}
	}
	bool IsBalance()
	{
		if (_root && _root->_col == RED)
		{
			std::cout << "根节点不是黑色" << std::endl;
			return false;
		}

		// 最左路径黑色节点数量做基准值
		int banchmark = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
				++banchmark;

			left = left->_left;
		}

		int blackNum = 0;
		return _IsBalance(_root, banchmark, blackNum);
	}

	bool _IsBalance(Node* root, int banchmark, int blackNum)
	{
		if (root == nullptr)
		{
			if (banchmark != blackNum)
			{
				std::cout << "存在路径黑色节点的数量不相等" << std::endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			std::cout << "出现连续红色节点" << std::endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		return _IsBalance(root->_left, banchmark, blackNum)
			&& _IsBalance(root->_right, banchmark, blackNum);
	}
private:
	Node* _root;
};

test.cpp

#include"AVL.h"
#include"RBTree.h"

void AVLTreeTest(void)
{
	AVLTree<int, int> av;
	int array[] = { 9,6,4,3,7,3,2,0,544,43224,23,423,42,4234,2,4242,423,42,7,11,98,5 };
	for (const auto& e : array)
	{
		av.insert(std::pair<int,int>(e,e));
	}
	av.inoder();
}
void RBTreeTest(void)
{
	RBTree<int, int> rb;
	int array[] = { 9,6,4,3,7,3,2,0,544,43224,23,423,42,4234,2,4242,423,42,7,11,98,5 };
	for (const auto& e : array)
	{
		rb.insert(std::pair<int, int>(e, e));
		std::cout << rb.IsBalance() << std::endl;
	}
	rb.inoder();
}
int main()
{
	//AVLTreeTest();
	RBTreeTest();
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值