顺丰车辆入场识别-电子围栏问题

这篇博客介绍了如何利用交点法判断一个点是否位于多边形内部。通过计算点与多边形边界的交点数量,可以确定点是在区域内还是外部。如果交点数量为偶数,则点在多边形外;若为奇数,则点在内。代码实现中,博主特别考虑了不存在交点和连线水平的情况,并强调了数学在算法设计中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

输入:
x = 1, y = 3,
coords = [0,0,0,4,4,4,2,2,4,0,0,0]
输出:true

比赛的时候计算点到连线的距离,但是发现漏洞太多,没法解决。搜了一下巨佬们的解法,发现有个大佬的解法思路都很清晰。

思路:交点法(射线法):如图所示

 根据 给定的点 两个点之间连线交点数量 判断是否存在于区域内部。

步骤:

首先,假定以右侧交点数量为判断依据;

然后,排除不存在交点的情况;

其次,算出相同y下,交点的 xr 与 x 的大小,如果x<xr,则说明有右交点,否则无右交点;

最后,根据交点数量 判断 对错【偶数在外为false,奇数在内为true】

注意:题目中表示,给定的点不会出现在边界上,可以理解为不考虑边界上的点

 代码:

class Solution {
public:
int countnum = 0;
bool flag = true;
    bool isPointInPolygon(double x, double y, vector<double>& coords) {

        int n = coords.size();
	for (int i = 0; i <= n - 4; i+=2)// coords坐标存储方式:x1,y1,x2,y2....
	{
		double x1 = coords[i];
		double y1 = coords[i + 1];
		double x2 = coords[i + 2];
		double y2 = coords[i + 3];
        //不存在交点的情况,以及连线为水平的情况【为求交点考虑】
		if (min(y1,y2)>y || max(y1,y2)<=y||y1==y2)continue;
        else if(x1==x2&&x1>x)countnum++;//如果连线竖直【为求k考虑】,且 大于 x
        else//否则计算 交点
		{
		    double k = (y2 - y1) / (x2 - x1);
			double xr = (k * x1 + y - y1) / k;
			if (x < xr)countnum++;
		}
	}
	if (countnum % 2 == 0)flag = false;
	return flag;
    }
};

数学能力很重要啊~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值