第1关:线性回归模型应用
实现代码:
# -*- coding: utf-8 -*-
'''
油气藏的储量密度Y与生油门限以下平均地温梯度X1、
生油门限以下总有机碳百分比X2、生油岩体积与沉积岩体积百分比X3、砂泥岩厚度百分比X4、
有机转化率X5有关,数据文件为“1.xlsx”,字段如下:
样本ID X1 X2 X3 X4 X5 Y
(注:数据取自教材《Matlab数据分析方法》)
任务如下:
(1)利用线性回归分析命令,求出Y与5个因素之间的线性回归关系式系数向量c_x和常数项c_b
(2)求出线性回归关系的判定系数Slr
(3)今有一个样本X1=4,X2=1.5,X3=10,X4=17,X5=9,试预测该样本的Y值。
'''
def return_values():
import pandas as pd
import numpy as np
# 1.数据获取
data = pd.read_excel('1.xlsx')
x = data.iloc[:,1:6]
y = data.iloc[:,6]
# 2。导入线性回归模型,简称为LR
from sklearn.linear_model import LinearRegression as LR
lr = LR() #创建线性回归模型类
lr.fit(x, y) #拟合
Slr=lr.score(x,y) # 判定系数 R^2
c_x=lr.coef_ # x对应的回归系数
c_b=lr.intercept_ # 回归系数常数项
# 3.预测
x1=np.array([4,1.5,10,17,9])
x1=x1.reshape(1,5)
Y=lr.predict(x1) #采用自带函数预测
return(c_x,c_b,Slr,Y)
第2关:分类模型及应用
实现代码:
# -*- coding: utf-8 -*-
'''
企业到金融商业机构贷款,金融商业机构需要对企业进行评估。评估结果为0和1两种形式,
0表示企业两年后破产,将拒绝贷款;而1表示企业2年后具备还款能力,可以贷款。
表"2.xlsx",字段如下:企业编号、X1、X2、X3、Y,
(数据取自《Matlab在数学建模中的应用(第2版)》,卓金武,37页)
已知前20家企业的三项评价指标值和评估结果,试建立逻辑回归模型对剩余5家企业进行评估。