Educode--机器学习基础模型与算法测试闯关实验

第1关:线性回归模型应用

实现代码:

# -*- coding: utf-8 -*-

'''

油气藏的储量密度Y与生油门限以下平均地温梯度X1、

生油门限以下总有机碳百分比X2、生油岩体积与沉积岩体积百分比X3、砂泥岩厚度百分比X4、

有机转化率X5有关,数据文件为“1.xlsx”,字段如下:

样本ID    X1    X2    X3    X4    X5    Y

(注:数据取自教材《Matlab数据分析方法》)

任务如下:

(1)利用线性回归分析命令,求出Y与5个因素之间的线性回归关系式系数向量c_x和常数项c_b

(2)求出线性回归关系的判定系数Slr

(3)今有一个样本X1=4,X2=1.5,X3=10,X4=17,X5=9,试预测该样本的Y值。

'''

def return_values():

    import pandas as pd

    import numpy as np  

# 1.数据获取  

    data = pd.read_excel('1.xlsx')  

    x = data.iloc[:,1:6]  

    y = data.iloc[:,6]  

# 2。导入线性回归模型,简称为LR  

    from sklearn.linear_model import LinearRegression as LR  

    lr = LR()    #创建线性回归模型类  

    lr.fit(x, y) #拟合  

    Slr=lr.score(x,y)   # 判定系数 R^2  

    c_x=lr.coef_        # x对应的回归系数  

    c_b=lr.intercept_   # 回归系数常数项  

# 3.预测  

    x1=np.array([4,1.5,10,17,9])  

    x1=x1.reshape(1,5)  

    Y=lr.predict(x1)   #采用自带函数预测  

    return(c_x,c_b,Slr,Y) 

第2关:分类模型及应用

实现代码: 

# -*- coding: utf-8 -*-

'''

企业到金融商业机构贷款,金融商业机构需要对企业进行评估。评估结果为0和1两种形式,

0表示企业两年后破产,将拒绝贷款;而1表示企业2年后具备还款能力,可以贷款。

表"2.xlsx",字段如下:企业编号、X1、X2、X3、Y,

(数据取自《Matlab在数学建模中的应用(第2版)》,卓金武,37页)

已知前20家企业的三项评价指标值和评估结果,试建立逻辑回归模型对剩余5家企业进行评估。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值