快速排序(Quick-Sort)及优化

前置基础知识

1、快速排序的基本思想: 快速排序使用分治的思想,通过一趟排序将待排序列分割成两部分,其中一部分记录的关键字均比另一部分记录的关键字小。之后分别对这两部分记录继续进行排序,以达到整个序列有序的目的。
2、快速排序的三个步骤:
(1)选择基准:在待排序列中,按照某种方式挑出一个元素,作为 “基准”(pivot)
(2)分割操作:以该基准在序列中的实际位置,把序列分成两个子序列。此时,在基准左边的元素都比该基准小,在基准右边的元素都比基准大
(3)递归地对两个序列进行快速排序,直到序列为空或者只有一个元素。
3、选择基准的方式
对于分治算法,当每次划分时,算法若都能分成两个等长的子序列时,那么分治算法效率会达到最大。也就是说,基准的选择是很重要的。选择基准的方式决定了两个分割后两个子序列的长度,进而对整个算法的效率产生决定性影响。
最理想的方法是,选择的基准恰好能把待排序序列分成两个等长的子序列

随机算法与快速排序

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
注意!!!

即便对于随机算法,无论是计算期望运行时间还是最坏运行时间,我们都依然考虑最坏的输入。
期望运行时间不是输入为期望输入时的运行时间!我们讨论的是算法中随机部分的期望,不是所有可能输入的期望值。
在这里插入图片描述在这里插入图片描述在这里插入图片描述
(猴子排序)在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述

再来看快速排序

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
和的期望=期望的和在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

//快速排序c++版本 01
void quick_sort_v1(int *arr, int l, int r){
    if(l >= r) return;
    int x = l, y = r, base = arr[l];
    while(x <= y){
        while(x <= y && arr[y] > base){
            y--;
        }
        while(x <= y && arr[x] < base){
            x++;
        }
        if(x <= y){
            swap(arr[x], arr[y]);
            x++, y--;//两个箭头继续相向而行
        }
    }
    quick_sort_v1(arr, l, y);
    quick_sort_v1(arr, x, r);
    return;
}

int main(){
    
    int arr[6] = {9, 5, 1, 4, 0, 7};
    quick_sort_v1(arr, 0, 5);
    for(int i = 0; i < 6; i++){
        cout << arr[i] << endl;
    }
    return 0;
}

从C++STL 学习快速排序

  1. 单边递归法
  2. 三点取中法
  3. 特殊数据,停止快排(具体使用的是堆排序,此时堆排序虽然不能使用好CPU一读读一段数据的特性,但是它很稳定)
  4. 使用插入排序进行收尾
  5. 无监督写法(不太重要):泛指一种编程技巧,在函数的实现过程中,尽量少使用条件判断

算法题实战

排序数组

/**
 * 排序数组
 * @author: William
 * @time:2022-04-23
 */
public class Num912 {
	public int[] sortArray(int[] nums) {
		quick_sort(nums, 0, nums.length - 1);
		return nums;
    }
	
	public void quick_sort(int[] nums, int l, int r) {
		__quick_sort(nums, l, r);
		final_insert_sort(nums, l, r);//插入排序优化
	}
	
	public void swap(int[] nums, int l, int r) {
		int t = nums[l];
		nums[l] = nums[r];
		nums[r] = t;
	}
	
	public int median(int a, int b, int c) {
		int max = Math.max(a, Math.max(b, c));
		int min = Math.min(a, Math.min(b, c));
		if(a != max && a != min) return a;
		if(c != max && c != min) return c;
		//或者这样
//		if(a > b) swap(a, b);
//		if(a > c) swap(a, c);
//		if(b > c) swap(b, c);
		return b;
	}
	
	public void __quick_sort(int[] nums, int l, int r) {
		while(r - l > 16) {
			int i = l, j = r;
			double m = median(nums[l], nums[r], nums[(l + r) / 2]);//三点取中优化
//			do {
//				while(nums[i] < m) i++;
//				while(nums[j] > m) j--;
//				if(i <= j) {//此时i j没有错位
//					swap(nums, i, j);
//					i++;
//					j--;
//				}
//			}while(i <= j);//此时左边都小于中间值
			//while写法
			while(i <= j) {
				while(i <= j && nums[i] < m) {
					i++;
				}
				while(i <= j && nums[j] > m) {
					j--;
				}
				if(i <= j) {//此时上面循环停了,需要交换两个值
					swap(nums, i, j);
					i++; 
					j--;
				}
			}
			__quick_sort(nums, i, r);//把右边的都排好
			r = j;//再来排左边 单边递归优化
		}
	}
	public void final_insert_sort(int[] nums, int l, int r) {
		int index = l;
		for(int i = l + 1; i <= r; i++) {
			if(nums[i] < nums[index]) {
				index = i;//找到数组中最小元素
			}
		}
		while(index > l) {
			swap(nums, index, index - 1);//把index挪到第一个
			index--;
		}
		for(int i = l + 2; i <= r; i++) {
			int j = i;
			while(nums[j] < nums[j - 1]) {//也是从后往前一个个比较 插入排序优化
				swap(nums, j, j - 1);
				j--;
			}
		}
	}
}

排序链表

/**
 * 排序链表
 * @author: William
 * @time:2022-04-23
 */
class ListNode {
	   int val;
	   ListNode next;
	   ListNode() {}
	   ListNode(int val) { this.val = val; }
	   ListNode(int val, ListNode next) { this.val = val; this.next = next; }
	   }
public class Num148 {
	//快排方法
	public ListNode sortList(ListNode head) {
		if(head == null) return head;
		int l = head.val, r = head.val;
		double m;
		ListNode h1 = null, h2 = null, p = null, q = null;
		//寻找基准值
		p = head;
		while(p != null) {
			l = Math.min(l, p.val);
			r = Math.max(r, p.val);
			p = p.next;
		}
		if(l == r) return head;//终止条件很重要
		m = (l + r) / 2.0;
		p = head;
		//根据基准值分割链表
		while(p != null) {
			q = p.next;
			if(p.val <= m) {//小于基准值
				p.next = h1;
				h1 = p;
			}else {//大于基准值
				p.next = h2;
				h2 = p;
			}
			p = q;//p去找q
		}//递归排序子链表
		h1 = sortList(h1);
		h2 = sortList(h2);
		p = h1;//连接子链表
		while(p.next != null) {
			p = p.next;
		}
		p.next = h2;
		return h1;
    }
	//归并排序方法 - 递归版
	public ListNode sortList1(ListNode head) {
		if(head == null || head.next == null)
			return head;
		//快慢指针
		ListNode fast = head.next, slow = head;
		while(fast != null && fast.next != null) {
			slow = slow.next;
			fast = fast.next.next;
		}
		ListNode tmp = slow.next;//此时tmp位于链表中间
		slow.next = null;//链表断开
		ListNode left = sortList(head);
		ListNode right = sortList(tmp);
		ListNode h = new ListNode(0);
		ListNode res = h;
		while(left != null && right != null) {
			if(left.val < right.val) {
				h.next = left;
				left = left.next;
			}else {
				h.next = right;
				right = right.next;
			}
			h = h.next;
		}
		h.next = left != null ? left : right;//左边为空h就把他们连起来
		return res.next;
	}
}

盛水最多的容器

/**
 * 盛水最多的容器
 * @author: William
 * @time:2022-04-25
 */
public class Num11 {
	public int maxArea(int[] height) {
        //注意j的位置,别超出数组长度了
       int i = 0, j = height.length - 1, res = 0;
       while(i < j){
//           res = height[i] < height[j] ?
//           //因为矩形的面积取决于短板
//                Math.max(res, (j - i) * height[i++]):
//                Math.max(res, (j - i) * height[j--]);
    	   //另一种写法
    	   res = Math.max(res, (j - i) * Math.min(height[i], height[j]));
    	   if(height[i] < height[j]) {
    		   i++;
    	   }else {
    		   j--;
    	   }
       }
       return res;
    }
}

最小K个数

/**
 * 最小K个数
 * @author: William
 * @time:2022-04-24
 */
public class Num17_14 {
	//快排的核心是分区
	public int[] smallestK(int[] arr, int k) {
        int[] ans = new int[k];
        if(k == 0) return ans;
        quick_sort(arr, 0, arr.length - 1, k);
        for(int i = 0; i < k ; i++) {
        	ans[i] = arr[i];
        }
        return ans;
    }
	private int getmid(int a, int b, int c) {
//		int max = Math.max(a, Math.max(b, c));
//		int min = Math.min(a, Math.min(b, c));
//		if(a != max && a != min) return a;
//		if(c != max && c != min) return c;
		//或者这样 
		if(a > b) swap(a, b);
		if(a > c) swap(a, c);
		if(b > c) swap(b, c);
		return b;
	}
	private void swap(int a, int b) {
		int t = a;
		a = b;
		b = t;
	}
	private void swap(int[] arr, int l, int r) {
		int t = arr[l];
		arr[l] = arr[r];
		arr[r] = t;
	}
	
	public void quick_sort(int[] arr, int l, int r, int k) {
		if(l >= r) return;
		//这个三点取中优化力扣不给过 —— 栈溢出
		int i = l , j = r, mid = getmid(arr[l], arr[r], arr[(l + r) / 2]);
		do {
			while(arr[i] < mid) i++;
			while(arr[j] > mid) j--;
			if(i <= j) {
				swap(arr, i, j);
				i++;
				j--;
			}
		}while(i <= j);
		if(j - l == k - 1) return;//左边区间刚好是k个数
		if(j - l >= k) {//左边多了 继续筛选
			quick_sort(arr, l , j, k);
		}else {//左边少 继续填
			//此时i在j后面一位 i - l == j - l + 1
			quick_sort(arr, i, r, k - i + l);//注意
		}
		return;
	}
	
	//直接排序
	 public int[] smallestK2(int[] arr, int k) {
		 int[] vec = new int[k];
		 Arrays.sort(arr);
		 for(int i = 0; i < k; ++i) {
			 vec[i] = arr[i];
		 }
		 return vec;
	 }
	 //堆 大根堆
	 public int[] smallestK3(int[] arr, int k) {
		 int[] res = new int[k];
		 if(k == 0) return res;
		 PriorityQueue<Integer> queue = new PriorityQueue<>((a, b) -> b - a);
		 for(int i = 0; i < k; i++) {
			 //将前k个数插入到大根堆中
			 queue.offer(arr[i]);
		 }
		 for(int i = k; i < arr.length; i++) {
			 //从k+1开始遍历
			 if(queue.peek() > arr[i]) {
				 queue.poll();//大了就弹出换小的
				 queue.offer(arr[i]);
			 }
		 }
		 for(int i = 0; i < k; i++) {
			 res[i] = queue.poll();
		 }
		 return res;
	 }
}

剑指offer21 调整数组顺序使奇数位偶数前面

/**
 * 剑指offer21 调整数组顺序使奇数位偶数前面
 * @author: William
 * @time:2022-04-24
 */
public class Num21 {
	//kkb中的dowhile版本
	public int[] exchange(int[] nums) {
		if(nums.length == 0) return nums;
		int l = 0, r = nums.length - 1;
		do{
			//注意l这个条件很重要 如果都是奇数 l < nums.length - 1程序会超出时间限制
			while(l < nums.length && nums[l] % 2 != 0) l++;
			while(r >= 0 && nums[r] % 2 == 0) r--;
			if(l <= r) {
				int t = nums[l];
				nums[l] = nums[r];
				nums[r] = t;
			}
		}while(l <= r);
		//k神版本 x&1 位运算 等价于 x % 2 取余运算
//		while( l < r) {
//			while(l < r && (nums[l] & 1) == 1) l++;
//			while(l < r && (nums[r] & 1) == 0) r--;
//			int t = nums[l];
//			nums[l] = nums[r];
//			nums[r] = t;
//		}
		return nums;
    }
	//一端开始
	public int[] exchange1(int[] nums) {
		int slow = 0, fast = 0;
		while(fast < nums.length) {
			if((nums[fast] & 1) == 1) swap(nums, slow++, fast);
			fast++;
		}
		return nums;
	}
	public void swap(int[] nums, int a, int b) {
		int t = nums[a];
		nums[a] = nums[b];
		nums[b] = t;
	}
}


滑动窗口的最大值

/**
 * 滑动窗口的最大值
 * @author: William
 * @time:2022-04-25
 */
public class Num239 {
	public int[] maxSlidingWindow(int[] nums, int k) {
		//if(k == 0) return new int[0]; 或者
		if(nums == null || nums.length < 2) return nums;
		int index = 0;
		List<Integer> res = new ArrayList<>();
		//双向队列保存当前窗口最大值的数组位置 从大到小排序
		Deque<Integer> deque = new ArrayDeque<>();
		while(index < nums.length) {//遍历数组
			if(!deque.isEmpty() && deque.getFirst() + k <= index){
				//此时代表这个值不属于滑窗中的部分
				deque.pollFirst();//队列往前吐出
			}
			while(!deque.isEmpty() && nums[index] > nums[deque.getLast()]) {
				//此时说明最后那个没机会成为最大值 直接吐出
				deque.pollLast();
			}
			deque.offerLast(index);//往后滑,就是从后面新增,从前面删除
			index++;
			if(index >= k) {//滑动窗口满了
			//规定维护的双端队列最大值永远放在队列头部
				res.add(nums[deque.getFirst()]);
			}
		}//把集合转成数组
		return res.stream().mapToInt(Integer::valueOf).toArray();
    }
	//左程云老师的双端队列解法
	 public int[] maxSlidingWindow2(int[] nums, int k) {
	        if(nums == null || nums.length < 2) return nums;
	        // 双向队列 保存当前窗口最大值的数组位置 保证队列中数组位置的数值按从大到小排序
	        Deque<Integer> queue = new ArrayDeque<>();
	        // 结果数组
	        int[] result = new int[nums.length - k + 1];
	        // 遍历nums数组
	        for(int i = 0;i < nums.length;i++){
	            // 保证从大到小 如果前面数小则需要依次弹出,直至满足要求
	            while(!queue.isEmpty() && nums[queue.peekLast()] <= nums[i]){
	                queue.pollLast();
	            }
	            // 添加当前值对应的数组下标
	            queue.addLast(i);
	            // 判断当前队列中队首的值是否有效
	            if(queue.peek() <= i - k){
	                queue.poll();   
	            } 
	            // 当窗口长度为k时 保存当前窗口中最大值
	            if(i + 1 >= k){
	                result[i - k + 1] = nums[queue.peek()];
	            }
	        }
	        return result;
	 }
	 //优先队列 —— 大根堆
	 public int[] maxSlidingWindow3(int[] nums, int k) {
		 int n = nums.length;
		 //优先队列存放的是而二元组(num, index)
		 //大顶堆:元素大小不同按元素排列,元素大小相同按下标进行排列
		 //num:比较元素大小
		 //index:判断窗口的大小是否超出范围
		 PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2) ->{
			 return pair1[0] != pair2[0] ? pair2[0] - pair1[0] : pair2[1] - pair1[1];
		 });
		 for(int i = 0; i < k ; ++i) {//把数组加到大根堆中去
			 pq.offer(new int[] {nums[i], i});
		 }
		 int[] ans = new int[n - k + 1];
		 ans[0] = pq.peek()[0];//初始化res[0]:拿出堆顶元素
		 for(int i = k; i < n; ++i) {//向右移动滑动窗口
			 pq.offer(new int[] {nums[i], i});
			 while(pq.peek()[1] <= i - k) {//将下标不再滑动窗口的元素都干掉
				 pq.poll();//维护:堆的大小就是滑动窗口大小
			 }//此时堆顶元素就是滑动窗口的最大值
			 ans[i - k + 1] = pq.peek()[0];
		 }
		 return ans;
	 }
}

字符串解码

/**
 * 字符串解码
 * @author: William
 * @time:2022-04-25
 */
public class Num394 {
	//递归法
	public String decodeString(String s) {
		//1. 数字 正常读取
		//2. 字母 拼接
		//3. [ 重复k次 调用递归方法 得到子串后作拼接
		//4. ] 字符串处理完毕 结束递归
		return decodeString(s, 0)[0];
    }
	
	//如果长度为2: 0 右括号的位置  1 字串
	//1:只包含结果字串
	public String[] decodeString(String s, int i) {
		StringBuffer res = new StringBuffer();
		int num = 0;
		while(i < s.length()) {
			if(s.charAt(i) >= '0' && s.charAt(i) <= '9') {//数字
				num = num * 10 + (s.charAt(i) - '0');//字符串转数字常用工具
			}else if(s.charAt(i) == '[') {
				String[] tmp = decodeString(s, i + 1);//i+1开始获取
				i = Integer.parseInt(tmp[0]);//更新i的位置
				while(num > 0) {//拼接
					res.append(tmp[1]);
					num--;
				}
			}else if(s.charAt(i) == ']') {
				return new String[] {String.valueOf(i), res.toString()};//记录当前位置
			}else {
				res.append(s.charAt(i));
			}
			i++;
		}
		return new String[] {res.toString()};
	}
	//k神 —— 辅助栈法
	public String decodeString1(String s) {
		StringBuffer res = new StringBuffer();
		int num = 0;
		LinkedList<Integer> stack_multi = new LinkedList<>();
		LinkedList<String> stack_res =  new LinkedList<>();
		for(Character c : s.toCharArray()) {
			if(c >= '0' && c <= '9') {
				num = num * 10 + Integer.parseInt(c + "");
			}else if(c == '[') {//将num和res入栈 并分别置空
				stack_multi.addLast(num);
				stack_res.addLast(res.toString());
				num = 0;
				res = new StringBuffer();
			}else if(c == ']') {//stack出栈 
				//拼接res = last_res + cur_multi * res
				StringBuffer tmp = new StringBuffer();
				int cur_multi = stack_multi.removeLast();
				for(int i = 0; i < cur_multi; i++) tmp.append(res);
						res = new StringBuffer(stack_res.removeLast() + tmp);
			}else {//为字母的时候
				res.append(c);
			}
		}
		return res.toString();
	}
}

用Rand7()实现Rand10

/**
 * 用Rand7()实现Rand10
 * @author: William
 * @time:2022-04-26
 */
/**
 * The rand7() API is already defined in the parent class SolBase.
 * public int rand7();
 * @return a random integer in the range 1 to 7
 */
public class Num470 {
	/**
	 * 已知 rand_N() 可以等概率的生成[1, N]范围的随机数
	   那么:
	   (rand_X() - 1) × Y + rand_Y() ==> 可以等概率的生成[1, X * Y]范围的随机数
	   即实现了 rand_XY()
	   通过前面的分析我们发现:
	   要实现rand10(),就需要先实现rand_N(),并且保证N大于10且是10的倍数。
	   这样再通过rand_N() % 10 + 1 就可以得到[1,10]范围的随机数了。
	   (rand7()-1) × 7 + rand7()  ==> rand49()
	   但是这样实现的N不是10的倍数,这就需要"拒绝采样",
	   	也就是说如果某个采样结果不在要求的范围内,则丢弃它
	 */
	public int rand7() {//随机生成1-7
		Random r = new Random();
		int x = r.nextInt(7) + 1;
		//或者
		//int x = (int)(Math.random()*7 + 1);
		return x;
	}
	public int rand10() {
		int x = 0;
		while(true) {
			x = (rand7() - 1) * 7 + rand7();//R49 R10 1~40 R9 1~49
			if(x <= 40) {
				return x % 10 + 1;
			}
			x = (x - 40 - 1) * 7 + rand7();//R63
			if(x <= 60) {
				return x % 10 + 1;
			}
			x = (x - 60 - 1) * 7 + rand7();//R21
			if(x <= 20) {
				return x % 10 + 1;
			}
		}
    }
}

颜色分类

/**
 * 颜色分类
 * @author: William
 * @time:2022-04-24
 */
/**
 *for循环中++i和i++的区别
语法
for (语句1; 语句2; 语句3)
  {
  被执行的代码块
  }
语句 1 在循环(代码块)开始前执行
语句 2 定义运行循环(代码块)的条件
语句 3 在循环(代码块)已被执行之后执行
这就是循环中的++i和i++结果一样的原因,但是性能不一样,
在大量数据的时候++i的性能要比i++的性能好原因: 
i++由于是在使用当前值之后再+1,所以需要一个临时的变量来转存。 
而++i则是在直接+1,省去了对内存的操作的环节,相对而言能够提高性能
 *
 */
public class Num75 {
	//输入 0红色 1白色 2蓝色  [0, x] [ ] [y, r]
	public void sortColors(int[] nums) {
		three_partition(nums, 0, nums.length - 1);
    }
	void three_partition(int[] nums, int L, int R) {
		if(L >= R) return;
		//x 代表红色区间   y 蓝色   i 辅助遍历
		int x = -1, y = R + 1, i = L;//初始化
		while(i < y) {//撞上就代表整理好之前的区间了
			if(nums[i] == 1) {//白色就不需要管
				i++;
			}else if(nums[i] < 1) {//红色 
				x++;
				swap(nums, x, i);//红色区间扩容
				i++;
			}else if(nums[i] > 1) {//蓝色
				y--;
				swap(nums, i, y);
			}
		}
	}
	
	void swap(int[] nums, int i, int j) {
		int t = nums[i];
		nums[i] = nums[j];
		nums[j] = t;
	}
}

不同的二叉搜索树

/**
 * 不同的二叉搜索树
 * @author: William
 * @time:2022-04-25
 */
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
	}
}

public class Num95 {
	public List<TreeNode> generateTrees(int n) {
		if(n == 0) return new ArrayList<TreeNode>();
		return dfs(1, n);
    }
	
	private List<TreeNode> dfs(int l, int r){
		List<TreeNode> ans = new ArrayList<>();
		if(l > r) {
			ans.add(null);
			return ans;
		}
		for(int i = l; i <= r; i++) {//枚举每一个节点
			List<TreeNode> left_tree = dfs(l, i - 1);
			List<TreeNode> right_tree = dfs(i + 1, r);//分别拿出左右子树的组合
			for(TreeNode left : left_tree) {
				for(TreeNode right : right_tree) {
					TreeNode node = new TreeNode(i, left, right);
					ans.add(node);
				}
			}
		}
		return ans;
	}
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值