- 博客(7)
- 收藏
- 关注
原创 nnU-Net模型
这么说吧,nnUNet 就像是医学图像分割领域的 “万能裁缝”。打个比方:医院里有各种不同的医学图像要处理 —— 比如 CT 片、核磁共振图像,有的是拍大脑的,有的是拍肺部的,还有的是拍肝脏的。这些图像就像各种不同面料、不同款式的布料。这就导致医生或研究人员要花大量时间调参数、改模型,而且效果还不一定好。
2025-08-31 17:39:13
1954
原创 医学图像分割-重采样策略
图像重采样不是 “技术炫技”,而是医学图像分割的 “预处理基石”—— 它的核心是 “把混乱的原始数据,变成模型能理解的‘标准语言’”。不同的重采样方法和策略,本质是 “在‘信息保留’和‘计算效率’之间找平衡”:既要让模型看清病灶细节,又要让模型能跑起来(不撑爆显存、不拖慢训练)。而 nnUNet 的强大之处,就在于它能根据数据的 “个性”(数据指纹),自动选择最适合的 “平衡方案”,无需人工调参。
2025-08-30 13:52:38
1871
原创 Trans-Unet模型详解
这是单个 Transformer Layer 的结构,负责对图像分块后的序列进行全局语义建模输入(图像分块嵌入序列,记为 \(x_p^1, x_p^2, ..., x_p^N\))在这里介绍一下线性投影:将CNN提取到的二维特征图转换成Transformer能处理的序列形式,将特征图分割成互不重叠的patch,再对每个Patch展平,将其从三维变成一维,通 过线性投影层(实际上是一个全连接层),将每个Patch的向量映射到固定维度,得到Patch Embedding。
2025-08-22 09:25:52
2628
原创 指针的使用及其运用
区分p++和p+1(p++是指针后移了一个元素,指向的也是后面的元素,而p+1只是访问了后面的元素,并没有指向后面的元素,依旧会输出当前的元素值)打印出后,进行对a,*p和*&a进行区分(实则一样);对&a和p的地址进行区分(实则一样)
2023-04-14 20:06:03
131
1
原创 数组、排序的使用方法及其运用
存储类型 数据类型 数组名[元素个数]数组名:表示数组的首地址,地址常量,不能被赋值访问方式:数组名[下标],下标从0开始,到n-1注意:不要数组越界!!!!!1)定义格式存储类型 数据类型 数组名[元素个数]数组名:表示数组的首地址,地址常量,不能被赋值访问方式:数组名[下标],下标从0开始,到n-1注意:不要数组越界!!!!!2)初始化全部初始化//a[0]=1;a[1]=2;...a[4]=5部分初始化 未初始化的部分值为0未初始化 值为随机值,需要单独赋值。
2023-04-14 19:53:00
405
1
原创 c基础的选择、循环、控制语句基础知识以及简单编码
if语句的基本格式书写如下:if(判断语句)语句块1;else//这是if的基本结构,当if()括号内的判断语句成立时,就可以执行{}内的语句块1,否则执行else后面的{}内容。多个if的分支运用也是遵循这个规律,当然也可以在if里面进行多层嵌套。下面运用这个选择语句来进行一些简单代码的书写对一个简单的整数进行大于小于10的判断输出运用if的分支语句来进行对输入任意整数的小于10,等于10,大于10的输出。将三个整数进行比较并从大到小输出。大小写字母的转换。对输入成绩进行等级评价。
2023-04-12 20:25:32
134
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅