自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 边际减排成本、碳排放成本/DEA(SBM)模型测算

边际减排成本测算-- 利用非期望产出SBM模型计算碳排放边际成本、污染物排放边际成本以及减污降碳协同效应,参考文献为发表在《中国农村经济》上闫坤老师的《中国农业减污降碳协同效应的量化评估与动态演化* ——基于边际减排成本的分析》代码为matlab,编写近半个月,为保护知识劳动成果,仅提供代测算服务,不出售代码,可以保证和上述文献的计算结果小数点后四位一致!

2024-11-12 22:22:31 127

原创 EBM、DEA-SBM模型集合大全(普通的、非期望产出的、超效率的、CRS、VRS条件下的)

CSDN里面几乎没有一个正确的该模型代码,本人分享代码的测算结果已发表在C刊。\n\nclc\n\nclear\n\nX =[];%投入指标数据\n\nY = [];%期望产出指标数据\n\nZ = [];%非期望产出指标数据\n\n[m,n]=size(X);%m为投入指标数,n是样本数\n\ns=size(Y,1);%s为期望产出数\n\nq=size(Z,1);%q为非期望产出数\n\nD=1./(m*X');%目标函数的分母\n\nE=1./((s+q)*Y');%等式约束期望产出的分母\n\nF=

2022-09-13 14:36:19 4891 15

原创 马尔科夫链Markov以及空间Markov Matlab代码

本人在发表上一篇论文中用到了 普通马尔科夫链,顺便有偿分享一下代码,属实辛苦工作。现代码可以计算四区间(论文中最常用的 低、较低、较高、高),空间滞后类型也是4个。翻阅众多帖子没有一个帖子给出来,正确的清晰地马尔科夫链代码,实属悲哀。Matlab 代入自己的数据,一键生成如下表格!

2022-09-12 12:11:25 3787 16

原创 核密度估计(二维、三维)

核密度估计是通过平滑的峰值函数来拟合样本数据,利用连续的密度曲线描述随机变量的分布形态,具有稳健性强、模型依赖性弱的特性。现在已经被广泛的应用到动态演进分析当中,核密度估计通常有二维、三维表现形式,如下图:...

2022-06-06 11:33:23 7518 25

原创 VRS、CRS条件下非期望产出超效率SBM模型,以及普通SBM模型(可计算冗余度)

之前更新了一个帖子是VRS条件下非径向非导向条件下超效率SBM模型,现如今更新出CRS条件下(两者可配合使用),一般CRS条件下测出来的结果更好分析(没有效率值忽高忽低现象);此外尽管现在众多期刊上的文章不在分析冗余度,鉴于大家需求,本期也更新了另外两个代码,分别是VRS、CRS条件下非导向SBM模型(可计算松弛变量,可进一步分析冗余度)感兴趣的小伙伴,仍然是留言或者加QQ1002070132------------------------------------------------------.

2022-05-09 20:05:18 5753 2

原创 面板数据熵权法代码(stata)do文件

clear allglobal positive_var x1 x2 x8 x9 x10global negative_var x3 x4 x5 x6 x7global all_var $positive_var $negative_var foreach i in $positive_var { qui sum `i' gen x_`i'=(`i'-r(min))/(r(max)-r(min)) } foreach i in $negativ...

2022-04-09 20:01:33 4431 6

原创 中国矢量地图shp文件(带审图号)

带审图号的.shp文件(无审图号,文章一般不会被接受),Arcgis区域地图制作必备,空间计量的主要工具。可帮制作和提供源文件,可以留言、私信或见评论区

2022-03-05 08:21:09 4652 11

原创 非期望产出超效率SBM模型MATLAB代码

目前CSDN里面几乎没有一个正确的该模型代码,本人分享代码的测算结果已发表在C刊。clcclearX =[];%投入指标数据Y = [];%期望产出指标数据Z = [];%非期望产出指标数据[m,n]=size(X);%m为投入指标数,n是样本数s=size(Y,1);%s为期望产出数q=size(Z,1);%q为非期望产出数D=1./(m*X');%目标函数的分母E=1./((s+q)*Y');%等式约束期望产出的分母F=1./((s+q)*Z');%等式约束非

2022-02-16 21:58:09 8882 27

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除