- 博客(7)
- 收藏
- 关注
原创 LLM based Agent - Agent Skills实现思考
本文探讨了Skill的组成与应用实现。Skill由三部分组成:元数据(初始化加载)、指令(任务提示词)和资源(辅助文件)。在实现上,可采用文件系统方式:1)启动时加载元数据;2)通过直接命中、Agent选择或意图路由加载指令;3)利用工具调用资源文件。进阶用法强调Skills应支持渐进式披露,可扩展至内存/数据库等存储形式。文章为构建智能Agent提供了实用的Skill管理方案。
2026-01-09 11:07:16
412
原创 Agent Context Engineering - 使用LangGraph实现事实记忆
本文介绍了使用LangGraph的Store组件实现事实记忆的两种方法。第一种是事实存储,以schema名作为键存储结构化数据;第二种是记忆存储,使用UUID作为键存储记忆碎片。文章演示了如何通过定义Memory和MemoryCollection模式来结构化记忆数据,并使用ChatDeepSeek模型生成格式化输出。示例代码展示了如何初始化内存存储、保存记忆条目以及搜索指定命名空间的内容。最后介绍了使用TrustCall库的create_extractor功能从对话中提取新记忆的方法,并展示了如何更新已有记
2025-09-04 22:31:48
383
原创 LLM based Agent - LangChain结构化输出(含国内模型)
LangChain结构化输出方法对比 摘要:本文介绍了LangChain中的两种主流结构化输出方法(Pydantic模型和JSON输出),重点展示了with_structured_output()和PydanticOutputParser的使用方式。通过多个示例对比了GLM、GPT和DeepSeek模型在不同复杂度场景下的表现: with_structured_output()方法简单易用,适用于基础Pydantic模型 PydanticOutputParser需要自定义提示词,处理复杂模型更稳定 模型能力
2025-06-08 22:43:37
376
原创 Python数据分析-numpy
对象ndarray是一系列同类型数据的合,以 0 下标为开始进行集合中元素的索引。ndarray对象的数值计算,最终都会落到数组中的每个元素上 如,一维数组×A,那么数组中元素依次乘以A。ndarray 对象是用于存放同类型元素的多维数组。ndarray 中的每个元素在内存中都有相同存储大小的区域。
2024-10-27 10:21:10
967
计算机专业,计算机图形学,计算机图形学基础(孔令德版)第二章课后习题与拓展
2023-06-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
1