7-93 解一元一次方程

7-93 解一元一次方程

请编写程序,解一元一次方程,a**x+b=0。 一元一次方程求解公式为:x=−a**b
求解要求:
a\=0, 方程有唯一解,输出解;
a=0,b\=0, 方程无解,输出no solution
a=0,b=0, 则方程有无穷多解,输出Infinitely solutions

关于变量的值是0或者非0的认定
程序中,任何变量的绝对值只要小于10−7,就认为该变量的值为0;否则为非0值。

输入格式:

在一行输入两个实数,两数之间用空格间隔。

输出格式:

输出一个实数,保留3位小数.

输入样例:

3.0 -2.0

输出样例:

0.667
#include <stdio.h>
#include <math.h>

int main() {
    double a, b;
    long a2, b2;
    scanf("%lf %lf", &a, &b);
    a2 = (long) abs(a);
    b2 = (long) abs(b);
    if (fabs((a - a2)) > 0.0000001) {
        printf("%.3lf", -b / a);
    } else if (fabs((a - a2)) < 0.0000001 && fabs((b - b2)) > 0.0000001) {
        printf("no solution");
    } else if (fabs((a - a2)) < 0.0000001 && fabs((b - b2)) < 0.0000001) {
        printf("Infinitely solutions");
    }

    return 0;
}

思路

- 又是纯数学题,能理解代码就理解,不能理解就抄答案吧
### 一元二次方程的计算机算法 #### 背景介绍 一元二次方程的标准形式为 \( ax^2 + bx + c = 0 \),其中 \( a \neq 0 \)[^1]。为了计算其,通常采用求根公式: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 此公式的应用依赖于判别式 \( D = b^2 - 4ac \) 的值。当 \( D > 0 \) 时,存在两个不同的实数;当 \( D = 0 \) 时,只有一个实数(重根);而当 \( D < 0 \) 时,不存在实数。 #### 使用Java实现一元二次方程求 以下是基于上述理论的一个简单Java程序示例[^2]: ```java import java.util.Scanner; public class QuadraticEquationSolver { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); System.out.println("请输入系数a:"); double a = scanner.nextDouble(); System.out.println("请输入系数b:"); double b = scanner.nextDouble(); System.out.println("请输入系数c:"); double c = scanner.nextDouble(); if (a == 0) { System.out.println("这不是一个有效的二次方程"); return; } double discriminant = b * b - 4 * a * c; if (discriminant > 0) { double root1 = (-b + Math.sqrt(discriminant)) / (2 * a); double root2 = (-b - Math.sqrt(discriminant)) / (2 * a); System.out.printf("方程有两不同实根:%f 和 %f\n", root1, root2); } else if (discriminant == 0) { double root = -b / (2 * a); System.out.printf("方程有一重复实根:%f\n", root); } else { System.out.println("方程无实根"); } } } ``` #### Python中的决方案 Python同样提供了简洁的方法来处理此类问题[^3]。下面是一个简单的例子: ```python import math def solve_quadratic(a, b, c): if a == 0: raise ValueError("Coefficient 'a' must not be zero.") d = b ** 2 - 4 * a * c if d > 0: x1 = (-b + math.sqrt(d)) / (2 * a) x2 = (-b - math.sqrt(d)) / (2 * a) return f"The equation has two real roots: {x1} and {x2}" elif d == 0: x = -b / (2 * a) return f"The equation has one real root: {x}" else: return "The equation has no real roots." print(solve_quadratic(1, -3, 2)) ``` 以上代码定义了一个函数 `solve_quadratic` 来接收三个参数并返回相应的结果字符串。 #### 总结 无论是使用Java还是Python,核心逻辑都围绕着判断判别式的正负以及利用求根公式展开运算。这些方法不仅适用于教学演示也广泛用于实际工程环境中决类似的数学难题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Likf(❁´◡`❁)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值