- 博客(6)
- 收藏
- 关注
原创 GPU的并行计算
分批在不同卡中计算数据,然后汇总到一张卡中更新参数最后发到各个模型中进行同步更新,类似map reduce,由于每一张卡都存了一份模型数据造成了数据冗余。batch size不能太小不然模型会出现梯度随机的情况。将模型拆开,类似于指令流水线,会造成GPU空间浪费。batch size太大会造成显卡资源不够的情况。张量并行,可以在一张GPU中进行。模型并行和数据并行可以同时进行。单机多卡--同步数据并行。激活函数可以用于列并行。
2024-11-06 11:10:37 87
原创 transformer与bert简介
为了增强模型的表达能力,Transformer 使用多头注意力机制,即通过多个并行的自注意力模块来捕捉输入的不同部分之间的关系,每个模块有自己独立的 Query、Key 和 Value。transformer中的核心机制,允许模型在处理每个单词的时候,权衡句子中所有其他单词的相关性,与RNN不同,它能并行计算并处理序列中的所有单词。与传统的单向语言模型(如 GPT,只能从左到右生成文本)不同,BERT 能够在一个词的表示中结合它左右两边的上下文,因此可以更好地捕捉语义。
2024-11-05 14:28:37 307
原创 python 列表相关知识点
元组:与列表类似,是由一系列按规定顺序进行排序的元素组成,用()创建或者tuple创建,与list区别,list是可修改的序列,而元组是不可以修改的,即创建无法修改当前元组。a.index(x,start,stop)计算元素x在列表a下标start到stop中第一次出现的位置。a.count(x)计算x在a中出现的次数,如果未出现则为0,否则为出现的次数。可以获取删除的内容 ,没有参数默认删除末尾的参数。a*x:a是list,x是int,构成一个新列表,其内容为a复制x次。删除列表中值为的参数。
2024-09-11 16:14:58 252
原创 nlp的任务分类
序列标注:分词/POS Tag/NER/语义标注。句子关系判断:文本匹配/Entaiment/QA。分类任务:文本分类、情感分析。NLU:理解自然语言。NLG:生成自然语言。
2024-07-24 12:19:14 263
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人