第十七次实验 朴素贝叶斯 垃圾分类 python

物联202   邱郑思毓  2008070213

实验要求:完成朴素贝叶斯算法实现垃圾邮件过滤(Python实现)

学习自:基于朴素贝叶斯的垃圾邮件分类Python实现_random1548的博客-CSDN博客_基于python的邮件分类系统

完成情况:

       实验中所采用的数据集为Enron Email Dataset。该数据集已经对正常邮件和垃圾邮件进行了分类。email文件夹下有两个文件夹ham和spam。ham文件夹下的txt文件为正常邮件;spam文件下的txt文件为垃圾邮件。


朴素贝叶斯变化的优点和缺点:

优点:在数据较少的情况下仍然有效,可以处理多类别问题

缺点:对于输入数据的准备方式较为敏感;由于朴素贝叶斯的“朴素”特点,所以会带来一些准确率上的损失

注意:使用拉普拉斯平滑解决零概率问题;

           对乘积结果取自然对数避免下溢出问题,采用自然对数进行处理不会有任何损失。
 


import os
import re
import string
import math

DATA_DIR = 'enron Email dataset/enron'
target_names = ['ham', 'spam']


def get_data(DATA_DIR):
    subfolders = ['enron%d' % i for i in range(1, 7)]
    data = []
    target = []
    for subfolder in subfolders:
        # spam
        spam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))
        for spam_file in spam_files:
            with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(1)
        # ham
        ham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))
        for ham_file in ham_files:
            with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(0)
    return data, target


X, y = get_data(DATA_DIR)


class SpamDetector_1(object):
    """Implementation of Naive Bayes for binary classification"""

    # 清除空格
    def clean(self, s):
        translator = str.maketrans("", "", string.punctuation)
        return s.translate(translator)

    # 分开每个单词
    def tokenize(self, text):
        text = self.clean(text).lower()
        return re.split("\W+", text)

    # 计算某个单词出现的次数
    def get_word_counts(self, words):
        word_counts = {}
        for word in words:
            word_counts[word] = word_counts.get(word, 0.0) + 1.0
        return word_counts


class SpamDetector_2(SpamDetector_1):
    # X:data,Y:target标签(垃圾邮件或正常邮件)
    def fit(self, X, Y):
        self.num_messages = {}
        self.log_class_priors = {}
        self.word_counts = {}
        # 建立一个集合存储所有出现的单词
        self.vocab = set()
        # 统计spam和ham邮件的个数
        self.num_messages['spam'] = sum(1 for label in Y if label == 1)
        self.num_messages['ham'] = sum(1 for label in Y if label == 0)

        # 计算先验概率,即所有的邮件中,垃圾邮件和正常邮件所占的比例
        self.log_class_priors['spam'] = math.log(
            self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))
        self.log_class_priors['ham'] = math.log(
            self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))

        self.word_counts['spam'] = {}
        self.word_counts['ham'] = {}

        for x, y in zip(X, Y):
            c = 'spam' if y == 1 else 'ham'
            # 构建一个字典存储单封邮件中的单词以及其个数
            counts = self.get_word_counts(self.tokenize(x))
            for word, count in counts.items():
                if word not in self.vocab:
                    self.vocab.add(word)  # 确保self.vocab中含有所有邮件中的单词
                # 下面语句是为了计算垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。
                # c是0或1,垃圾邮件的标签
                if word not in self.word_counts[c]:
                    self.word_counts[c][word] = 0.0
                self.word_counts[c][word] += count


MNB = SpamDetector_2()
MNB.fit(X[100:], y[100:])


class SpamDetector(SpamDetector_2):
    def predict(self, X):
        result = []
        flag_1 = 0
        # 遍历所有的测试集
        for x in X:
            counts = self.get_word_counts(self.tokenize(x))  # 生成可以记录单词以及该单词出现的次数的字典
            spam_score = 0
            ham_score = 0
            flag_2 = 0
            for word, _ in counts.items():
                if word not in self.vocab:
                    continue

                # 下面计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑
                else:
                    # 该单词存在于正常邮件的训练集和垃圾邮件的训练集当中
                    if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(
                            (self.word_counts['spam'][word] + 1) / (
                                        sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(
                            (self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))
                    # 该单词存在于垃圾邮件的训练集当中,但不存在于正常邮件的训练集当中
                    if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(
                            (self.word_counts['spam'][word] + 1) / (
                                        sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(1 / (sum(self.word_counts['ham'].values()) + len(
                            self.vocab)))
                    # 该单词存在于正常邮件的训练集当中,但不存在于垃圾邮件的训练集当中
                    if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(
                            (self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))

                # 把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来
                spam_score += log_w_given_spam
                ham_score += log_w_given_ham

                flag_2 += 1

                # 最后,还要把先验加上去,即P(垃圾邮件)和P(正常邮件)
                spam_score += self.log_class_priors['spam']
                ham_score += self.log_class_priors['ham']

            # 最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件
            if spam_score > ham_score:
                result.append(1)
            else:
                result.append(0)

            flag_1 += 1

        return result


MNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]

accuracy = 0
for i in range(100):
    if pred[i] == true[i]:
        accuracy += 1
print("测试的正确率为:"+accuracy)  # 0.98

结果为:数据集中有训练集和测试集,所以当我们对训练结果进行测试时,可以发现测试结果很高为98%,所以可以实现大部分的垃圾邮件的检索。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
垃圾邮件朴素叶斯分类器是一种常用的机器学习算法,用于将电子邮件分类垃圾邮件或非垃圾邮件。它基于朴素叶斯定理和特征独立性假设,通过计算给定特征条件下的类别概率来进行分类。 在Python中,可以使用scikit-learn库来实现垃圾邮件朴素叶斯分类器。以下是一个简单的示例代码: ```python import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import train_test_split # 读取数据集 data = pd.read_csv('spam.csv') # 划分特征和标签 X = data['text'] y = data['label'] # 将文本转换为特征向量 vectorizer = CountVectorizer() X = vectorizer.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建朴素叶斯分类器并进行训练 classifier = MultinomialNB() classifier.fit(X_train, y_train) # 在测试集上进行预测 y_pred = classifier.predict(X_test) # 输出准确率 accuracy = (y_pred == y_test).mean() print("准确率:", accuracy) ``` 上述代码中,首先使用pandas库读取垃圾邮件数据集,然后将文本数据和标签分别存储在X和y中。接下来,使用CountVectorizer将文本转换为特征向量。然后,使用train_test_split函数将数据集划分为训练集和测试集。创建MultinomialNB朴素叶斯分类器,并在训练集上进行训练。最后,在测试集上进行预测,并计算准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值