蓝桥杯 练习题 01背包 python

题目 1924:

蓝桥杯算法提高VIP-01背包

时间限制: 1Sec 内存限制: 128MB 提交: 5203 解决: 1506

题目描述

给定N个物品,每个物品有一个重量W和一个价值V.你有一个能装M重量的背包.问怎么装使得所装价值最大.每个物品只有一个.

输入

输入的第一行包含两个整数n, m,分别表示物品的个数和背包能装重量。
以后N行每行两个数Wi和Vi,表示物品的重量和价值

输出

输出1行,包含一个整数,表示最大价值。

样例输入

3 5
2 3
3 5
4 7

样例输出

8

dp数组dp[i][j]

i代表第i-1种商品商品,j代表背包重量

 

状态转移方程为 

dp[i][j]=dp[i-1][j]

dp[i][j]=max(dp[i-1][j],dp[i-1][j-a[i-1][0]]+a[i-1][1])

其中第二个方程[j-a[i-1][0]]作用是回到能装入该物品时的状态为当前背包容量减去当前物品重量

#01背包
n,m=map(int,input().split())
a=[]
for i in range(n):
    a.append(list(map(int,input().split())))

dp=[[0 for i in range(m+1)]for _ in range(n+1)]

for i in range(1,n+1):
    for j in range(1,m+1):
        if a[i-1][0]>j:#当前物品重量大于当前背包容量
            dp[i][j]=dp[i-1][j]
            #print(i,j)

        else:
            dp[i][j]=max(dp[i-1][j],dp[i-1][j-a[i-1][0]]+a[i-1][1])
            #print(i,j,dp)
print(dp[n][m])

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 下面是Python实现的01背包问题: ```python def knapsack(wt, val, W, n): # 创建 dp 数组 dp = [[0 for x in range(W + 1)] for y in range(n + 1)] # 填充 dp 数组 for i in range(n + 1): for j in range(W + 1): if i == 0 or j == 0: dp[i][j] = 0 elif wt[i - 1] <= j: dp[i][j] = max(val[i - 1] + dp[i - 1][j - wt[i - 1]], dp[i - 1][j]) else: dp[i][j] = dp[i - 1][j] # 返回最大价值 return dp[n][W] ``` 其中,`wt`是物品重量的列表,`val`是物品价值的列表,`W`是背包容量,`n`是物品数量。函数返回最大价值。 ### 回答2: 01背包问题是一个经典的动态规划问题,常被用于解决背包问题。解决该问题的方法有很多,其中一种常见的方法是使用Python语言进行编程。 在解决01背包问题时,需要定义一个二维数组dp来保存每个状态的最优值。其中dp[i][j]表示在前i个物品中,总重量不超过j的情况下,能够获得的最大价值。初始时,将dp数组所有元素初始化为0。 然后,需要使用一个循环来遍历每个物品,并更新dp数组。对于每个物品,可以选择将其放入背包中,也可以选择不放入背包中。如果选择放入背包中,对应的状态转移方程为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。如果选择不放入背包中,对应的状态转移方程为:dp[i][j] = dp[i-1][j]。 最后,通过遍历完所有物品后,dp[n][m]即表示在前n个物品中,总重量不超过m的情况下,能够获得的最大价值。代码如下所示: ```python def knapSack(W, wt, val, n): dp = [[0 for j in range(W + 1)] for i in range(n + 1)] for i in range(1, n + 1): for w in range(1, W + 1): if wt[i - 1] <= w: dp[i][w] = max(val[i - 1] + dp[i - 1][w - wt[i - 1]], dp[i - 1][w]) else: dp[i][w] = dp[i - 1][w] return dp[n][W] ``` 以上就是使用Python解决01背包问题的一个简单示例。通过动态规划的思想,可以高效地求解背包问题,得到最优解。 ### 回答3: 01背包问题是一个经典的动态规划问题,常用于解决资源分配的优化问题。假设我们有一个背包,可以装载一定重量的物品,现在有N个物品,每个物品的重量分别是w1,w2,...,wn,价值分别是v1,v2,...,vn。我们需要选择一些物品放入背包中,使得物品总重量不超过背包的容量,同时价值最大化。 为了解决01背包问题,可以使用二维数组dp[i][j]表示前i个物品放入容量为j的背包中所能得到的最大价值。其中i表示物品的编号,j表示背包的容量。那么dp[i][j]的递推关系如下: 1. 当i=0或j=0时,dp[i][j] = 0。表示没有物品可选择或者背包容量为0时,最大价值为0。 2. 当wi > j时,dp[i][j] = dp[i-1][j]。如果当前物品的重量大于背包容量,那么无法选择放入该物品,最大价值与前i-1个物品一样。 3. 当wi <= j时,dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi]+vi)。如果当前物品的重量小于等于背包容量,我们可以选择放入该物品或者不放入该物品。选择放入该物品时,最大价值为前i-1个物品放入容量为j-wi的背包中的最大价值加上当前物品的价值;选择不放入该物品时,最大价值与前i-1个物品一样。 最终结果为dp[N][V],其中N表示物品的个数,V表示背包的最大容量。可以使用循环遍历的方式计算dp[i][j],从而得到问题的最优解。 使用Python实现01背包问题的代码如下: ```python def knapsack(N, V, w, v): dp = [[0] * (V + 1) for _ in range(N + 1)] for i in range(1, N + 1): for j in range(1, V + 1): if w[i - 1] > j: dp[i][j] = dp[i - 1][j] else: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i - 1]] + v[i - 1]) return dp[N][V] N = 4 # 物品的个数 V = 5 # 背包的容量 w = [2, 1, 3, 2] # 每个物品的重量 v = [3, 2, 4, 2] # 每个物品的价值 max_value = knapsack(N, V, w, v) print("背包能够装载的最大价值为:", max_value) ``` 以上代码实现了基于动态规划的01背包问题的解法,并输出了背包能够装载的最大价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值