自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 机器学习,r语言

数据探索和可视化:使用各种统计方法和可视化工具,对数据进行探索和分析,以了解数据的特征、分布和相关性等。特征选择和工程:根据数据的特点和问题的需求,选择合适的特征,并进行特征工程,如特征变换、特征组合等。选择模型:根据问题的类型和数据的特点,选择合适的机器学习模型,如线性回归、决策树、随机森林等。模型评估:使用测试集对训练好的模型进行评估,常用的评估指标包括准确率、召回率、F1值等。模型训练:使用训练集对选定的模型进行训练,通过调整模型的参数和超参数,优化模型的性能。表示使用所有的预测变量来预测响应变量。

2023-10-24 21:32:19 238

原创 10.12学习记录,randomforest

data6$cpp<-factor(data6$cpp)#变量类型修正。plot(cpp~IGF,data=traindata)#或绘制散点图。library(caret)#数据拆分,模型评估,构建机器学习模型。hist(data6$IGF,breaks = 50)#直方图。library(tidyverse)#数据整理及绘图。library(DataExplorer)#数据缺失。library(skimr)#数据整体情况。set.seed(42)#保证可重复性。#偏依赖图,自变量与因变量之间的关系。

2023-10-13 15:48:07 57

原创 mice填补

缺失数据集——MCMC估计插补成几个数据集——每个数据集进行插补建模(glm、lm模型)——将这些模型整合到一起(pool)——评价插补模型优劣(模型系数的t统计量)——输出完整数据集(compute)

2023-10-09 23:48:25 60

原创 今日学习收获11.16

总结每天大概学习内容

2022-11-16 15:37:36 101

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除