- 博客(4)
- 收藏
- 关注
原创 机器学习,r语言
数据探索和可视化:使用各种统计方法和可视化工具,对数据进行探索和分析,以了解数据的特征、分布和相关性等。特征选择和工程:根据数据的特点和问题的需求,选择合适的特征,并进行特征工程,如特征变换、特征组合等。选择模型:根据问题的类型和数据的特点,选择合适的机器学习模型,如线性回归、决策树、随机森林等。模型评估:使用测试集对训练好的模型进行评估,常用的评估指标包括准确率、召回率、F1值等。模型训练:使用训练集对选定的模型进行训练,通过调整模型的参数和超参数,优化模型的性能。表示使用所有的预测变量来预测响应变量。
2023-10-24 21:32:19 238
原创 10.12学习记录,randomforest
data6$cpp<-factor(data6$cpp)#变量类型修正。plot(cpp~IGF,data=traindata)#或绘制散点图。library(caret)#数据拆分,模型评估,构建机器学习模型。hist(data6$IGF,breaks = 50)#直方图。library(tidyverse)#数据整理及绘图。library(DataExplorer)#数据缺失。library(skimr)#数据整体情况。set.seed(42)#保证可重复性。#偏依赖图,自变量与因变量之间的关系。
2023-10-13 15:48:07 57
原创 mice填补
缺失数据集——MCMC估计插补成几个数据集——每个数据集进行插补建模(glm、lm模型)——将这些模型整合到一起(pool)——评价插补模型优劣(模型系数的t统计量)——输出完整数据集(compute)
2023-10-09 23:48:25 60
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人