GAN
文章平均质量分 94
进阶のmky
这个作者很懒,什么都没留下…
展开
-
PyTorch 实现CycleGAN 风格迁移
一、前言 pix2pix对训练样本要求较高,需要成对的数据集,而这种样本的获取往往需要耗费很大精力。CycleGAN恰巧解决了该问题,实现两个domain之间的转换,即只需要准备两种风格的数据集,让GAN去学习将domain X中的图片转换成domain Y的风格(不改变domain X原图中物体,仅仅实现风格转换)。 一种直观的思路是直接让G去学习domain X 到domain Y 以及domain Y 到domain X的映射关系,但这种方式会造成G生成图片的随机性...原创 2021-12-24 22:49:15 · 15873 阅读 · 75 评论 -
PyTorch 实现Image to Image (pix2pix)
一、前言 pix2pix可以实现画风迁移、图片修复、语义分割、图片上色等等。这里主要实现将facades labels转换成真实图片。由于源码中涉及的功能较多,代码较为复杂,这里我将主要部分拿了出来并做了一些小修改。 在传统的GAN中,生成器G的输入是噪声z,目的是让G去学习一种分布去拟合真实数据的分布。而在pix2pix中,G的输入是facades labels,生成器G一方面要尽可能生成真的图片去骗过D,另一方面要使输出尽可能去逼近facades labels对应的真...原创 2021-12-21 13:35:19 · 7359 阅读 · 46 评论 -
[记录]GAN学习之路[持续更新]
目录一、原始GAN二、WGAN(GP)一、原始GAN 通俗解释:GAN由生成器(Generator)和判别器(Discriminator)组成,生成器负责生成假的图片来骗过判别器,而判别器需要不断从真实图片上学习特征来提高自己的判别能力。 GAN本质是一个博弈的过程,首先生成器G将输入的随机噪声通过神经网络生成一张图,判别网络D会对G生成的假图进行打分(分值越接近0表示图片越假,越接近1表示图片越真),从而引导G生成更真的图(既然判别器D要...原创 2021-12-13 16:10:04 · 3190 阅读 · 0 评论 -
PyTorch 生成动漫人物头像 CGAN(李宏毅)
一、GAN简介 GAN由生成器(Generator)和判别器(Discriminator)组成,生成器负责生成假的图片来骗过判别器,而判别器需要不断从真实图片上学习特征来提高自己的判别能力。GAN本质是一个博弈的过程,首先生成器G将输入的随机噪声通过神经网络生成一张图,判别网络D会对G生成的假图进行打分(分值越接近0表示图片越假,越接近1表示图片越真),从而引导G生成更真的图(既然判别器D要引导生成器G变得更好,那么D的判别能力起到至关重要的作用,因此判别器D也在不断学...原创 2021-12-09 21:07:23 · 7769 阅读 · 130 评论