目录
MSFA (Multi-Stage with Filter Augmentation Pretraining Framework)——滤波增强的多阶段预训练框架
SARDet-100K
文献来源: 论文地址 仓库地址:github.com/zcablii/SARDet_100K
作者:李宇轩,李翔*,李玮杰,侯淇彬,刘丽,程明明,杨健*
2D Object Detection on SARDet-100K(SOTA榜)
基本特点
- 融合了一共十种开源可用的高质量数据集,并按照8:1:1的比例划分训练集,验证集,测试集。
- 保安一共116598张图片和245653个实例,包含飞机,船舶,港口,汽车,桥梁,坦克一共六个类别。
- 将各种类型的数据集统一重新切片并且转换注释格式为COCO格式。
论文提要
摘要
合成孔径雷达(SAR)目标检测因其不可替代的全天候成像能力近年来受到广泛关注。 然而,该研究领域面临着有限的公共数据集和无法访问的源代码。 为了应对这些挑战,该团队建立了一个新的基准数据集和一种用于大规模 SAR 物体检测的开源方法。 该团队的数据集 SARDet-100K 是对 10 个现有 SAR 检测数据集进行大量调查、收集和标准化的结果,为研究目的提供了大规模且多样化的数据集。该团队基于该数据集进行了全面的实验,发现了 SAR 目标检测的一个关键挑战:RGB 数据集的预训练和 SAR 数据集的微调在数据域和模型结构方面存在巨大差异。 为了弥补这些差距,该团队提出了一种新颖的多阶段过滤器增强(MSFA)预训练框架,该框架从数据输入、域转换和模型迁移的角度解决了问题。 所提出的 MSFA 方法显着增强了 SAR 目标检测模型的性能,同时在不同模型中展示了卓越的通用性和灵活性。
本文的贡献
- 引入第一个用于 SAR 多类别目标检测的 COCO 级大规模数据集。
- 发现了 SAR 目标检测传统模型预训练和微调方法中的关键差距。
- 提出了带有滤波器增强(MSFA)的多阶段预训练框架,该框架在各种深度网络模型中表现出显着的有效性以及出色的通用性和灵活性。
- 通过发布与我们研究相关的数据集和代码,建立 SAR 物体检测的新基准。
SARDet_100K数据集
目前现存的SAR数据集相对有限,低分辨率的数据集往往局限于宏观视图上的场景分类,高分辨率 的数据集虽能更好描述例如船,车这类的小目标&