最近在写fm模型时,学到了一个新的对矩阵条件批量处理的操作。
fm模型的关键在于构建了特征的二阶交叉,并且对每个特征分量引入k个辅助向量,使用向量内积的方法表示原先的权重矩阵,起到降维的作用。
此时,我在得到预测值之后,会出现不符合常理的值,例如电影评分为1-5,模型可能预测出大于5或者小于1的分数来,此时就需要对矩阵按条件处理,使用torch.where函数和torch.full_like函数。
y_pre = torch.where(y_pre > 5.0, torch.full_like(y_pre, 5.0), y_pre)
y_pre = torch.where(y_pre < 1.0, torch.full_like(y_pre, 1.0), y_pre)
这一串代码的运行逻辑是:
第一步:使用torch.full_like创建一个和y_pre的shape相同的元素,并且元素值都为5.
第二步:使用torch.where进行条件替换
torch.where接受三个参数,第一个参数为条件张量,第二个参数为条件为真时的处理,第三个参数为条件为假时的处理。
按照这样的逻辑,就可以将矩阵内满足条件的元素进行批量统一处理了。