大致的了解:
定义:
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所谓的并、查)。比如说,我们可以用并查集来判断一个森林中有几棵树、某个节点是否属于某棵树等。
主要构成:
并查集主要由一个整型数组pre[ ]和两个函数find( )、join( )构成。
数组 pre[ ] 记录了每个点的前驱节点是谁,函数 find(x) 用于查找指定节点 x 属于哪个集合,函数 join(x,y) 用于合并两个节点 x 和 y 。
通俗一点:找老大的老大,只有最顶尖的那个才能算一个集体的象征;
find()函数
int find(int x) //查找x的代表元
{
while(pre[x] != x) //如果x的前驱结点不是自己
x = pre[x];
return x;
}
join()函数
void join(int x,int y)
{
int fx=find(x), fy=find(y);
if(fx != fy)
pre[fx]=fy; //fy做fx的前驱结点,整合老大
}
题解:
#include<stdio.h>
int bin[1002];
int findx(int x){
int r=x;
while(bin[r]!=r)
r=bin[r];
return r;
}
void merge(int x,int y)
{
int fx,fy;
fx=findx(x);
fy=findx(y);
if(fx!=fy)
bin[fx]=fy;//找头头哦
}
int main(){
int n,m,i,x,y,count;
while(scanf("%d",&n),n){
for(i=1;i<=n;i++)
bin[i]=i;
for(scanf("%d",&m);m>0;m--){
scanf("%d %d",&x,&y);
merge(x,y);
}
for(count=-1,i=1;i<=n;i++)
if(bin[i]==i)count++;
printf("%d\n",count);
}
return 0;
}
注意:
1、保持着擒贼先擒王的原则;
2、记住自己的目标,不要把自己给整迷糊了