声明:本文为作者学习笔记,学习所得随手而记,部分材料来源于网上学习,若侵权请联系作者。
前面我们已经介绍了不平衡数据集中二元分类问题下的多个度量指标,例如:精度、召回率等。但是在现实生活中,我们要解决的问题往往是多分类问题,那对于多分类问题我们应如何利用这些度量,则是本篇文章要解决的问题。
多分类问题下的准确率、精度、召回率、F1值
我们一共选择以下四个度量来进行分析,我们重申一下定义。
(1)准确率(Accuracy):正确分类的样本个数占总样本的个数,即:
(2)精度(precision):精度确定在分类器中预测为正类的记录中实际为正类记录所占的比例,即:
(3)召回率(recall):召回率度量被分类器正确预测的正样本的比