不平衡数据集中多分类问题下的准确率、精度、召回率以及F1-score的计算

声明:本文为作者学习笔记,学习所得随手而记,部分材料来源于网上学习,若侵权请联系作者。

       前面我们已经介绍了不平衡数据集中二元分类问题下的多个度量指标,例如:精度、召回率等。但是在现实生活中,我们要解决的问题往往是多分类问题,那对于多分类问题我们应如何利用这些度量,则是本篇文章要解决的问题。

多分类问题下的准确率、精度、召回率、F1值

       我们一共选择以下四个度量来进行分析,我们重申一下定义。

(1)准确率(Accuracy):正确分类的样本个数占总样本的个数,即:

Accuracy=\frac{TP+TN}{TP+TN+FP+FN}

(2)精度(precision):精度确定在分类器中预测为正类的记录中实际为正类记录所占的比例,即:

P=\frac{TP}{TP+FP}

(3)召回率(recall):召回率度量被分类器正确预测的正样本的比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

练习时长四年的大数据实习生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值