Matlab数据统计分析与多项式计算

本文详细介绍了MATLAB在数据处理与分析方面的常用函数,包括最大最小值、平均值和中值计算、累加和累乘、标准差、相关系数、排序、多项式运算以及数据插值和曲线拟合等。这些工具对于科学研究和工程计算至关重要。
摘要由CSDN通过智能技术生成

一.数据统计分析

1.求最大最小元素  

y=max(X)X为向量,若x为复数则按模取最大值

[y,k]=max(X)k为序号

X为矩阵时

1)Y=max(X)

返回行向量,向量Y第i个元素为X第i列最大值

2)[Y,U]=max(X)U为每列最大值的行号

3)Y=max(X,[],dim)当dim=1时同max(X)

当dim=2时返回一个列向量,返回每行最大值

2.求平均值和中值(用法同上)

mean()求算数平均值

median() 求中值

sum()  求和

prod()  求积函数

3.求累加和与累乘积

cumsum()

cumprod()

第i个元素为前i个数的累加或累积

4.计算标准差

std(X)计算向量X的标准差

std(A)计算矩阵A各列的标准差

5.相关系数函数

corrcoef(A):返回由矩阵A形成的一个相关系数矩阵,其中第i行第j列的元素表示原矩阵A中第i列和第j列的相关系数

corrcoef(X,Y)X,Y是向量用于求向量X,Y之间的相关系数

6.排序

sort(X)对向量X按升序进行排序

[Y,I]=sort(A,dim,mode)

dim指出对行还是列排序

mode指出升序还是降序'ascend'升序'descend'降序

二.多项式计算

1.多项式表示

n次多项式用长度为n+1的行向量表示

多项式系数向量从高到低

包含0次项

若有项缺失则用0补充

2.多项式加减乘除

1)多项式加减及向量的加减

2)多项式乘法conv(p1,p2) p1,p2为行向量

3)多项式除法

[Q,r]=deconv(p1,p2)

Q是p1除以p2的商式,r为余式

p1=conv(Q,p2)+r

3.多项式求导

1)p=ployder(P)求多项式P的导函数

2)p=ployder(P,Q)求多项式P*Q的导函数

3)[p,q]=ployder(P,Q)求多项式P/Q的导函数,分子存入p,分母存入q

4.多项式求值

ployval(P,x)代数多项式求值

ployvalm(P,x)矩阵多项式求值,x为矩阵

x为标量则求该点的值

若x为矩阵则求每个元素的值

5.多项式求根

x=roots(P)

已知全部根可用P=ploy(x)反求多项式

三.数据插值

1.yy=interp1(x,y,xx,method)

x,y是已知的向量

xx是一个表示要插值的点的向量

method:
1)linear:线性插值(默认)将插值点附近的两点连线,在直线上选取点插值计算

2)nearest:最近点插值

3)pchip分段三次埃米尔特插值,保持曲线光滑的同时具有保形性

4)三次样条插值

2.三维数据插值

zz=interp2(x,y,z,xx,yy,method)

不支持pchip

四.曲线拟合

ployfit():多项式拟合函数

求得最小二乘拟合多项式系数

1.P=ployfit(X,Y,m)m:多项式系数

2.[P,S]=ployfit(X,Y,m)

3.[P,S,mu]=ployfit(X,Y,m)

根据样品数据X,Y产生一个m次多项式P及其在采样点误差数据S,mu是一个二元向量

mu(1)是mean(X),mu(2)是std(X)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值