一.数据统计分析
1.求最大最小元素
y=max(X)X为向量,若x为复数则按模取最大值
[y,k]=max(X)k为序号
X为矩阵时
1)Y=max(X)
返回行向量,向量Y第i个元素为X第i列最大值
2)[Y,U]=max(X)U为每列最大值的行号
3)Y=max(X,[],dim)当dim=1时同max(X)
当dim=2时返回一个列向量,返回每行最大值
2.求平均值和中值(用法同上)
mean()求算数平均值
median() 求中值
sum() 求和
prod() 求积函数
3.求累加和与累乘积
cumsum()
cumprod()
第i个元素为前i个数的累加或累积
4.计算标准差
std(X)计算向量X的标准差
std(A)计算矩阵A各列的标准差
5.相关系数函数
corrcoef(A):返回由矩阵A形成的一个相关系数矩阵,其中第i行第j列的元素表示原矩阵A中第i列和第j列的相关系数
corrcoef(X,Y)X,Y是向量用于求向量X,Y之间的相关系数
6.排序
sort(X)对向量X按升序进行排序
[Y,I]=sort(A,dim,mode)
dim指出对行还是列排序
mode指出升序还是降序'ascend'升序'descend'降序
二.多项式计算
1.多项式表示
n次多项式用长度为n+1的行向量表示
多项式系数向量从高到低
包含0次项
若有项缺失则用0补充
2.多项式加减乘除
1)多项式加减及向量的加减
2)多项式乘法conv(p1,p2) p1,p2为行向量
3)多项式除法
[Q,r]=deconv(p1,p2)
Q是p1除以p2的商式,r为余式
p1=conv(Q,p2)+r
3.多项式求导
1)p=ployder(P)求多项式P的导函数
2)p=ployder(P,Q)求多项式P*Q的导函数
3)[p,q]=ployder(P,Q)求多项式P/Q的导函数,分子存入p,分母存入q
4.多项式求值
ployval(P,x)代数多项式求值
ployvalm(P,x)矩阵多项式求值,x为矩阵
x为标量则求该点的值
若x为矩阵则求每个元素的值
5.多项式求根
x=roots(P)
已知全部根可用P=ploy(x)反求多项式
三.数据插值
1.yy=interp1(x,y,xx,method)
x,y是已知的向量
xx是一个表示要插值的点的向量
method:
1)linear:线性插值(默认)将插值点附近的两点连线,在直线上选取点插值计算
2)nearest:最近点插值
3)pchip分段三次埃米尔特插值,保持曲线光滑的同时具有保形性
4)三次样条插值
2.三维数据插值
zz=interp2(x,y,z,xx,yy,method)
不支持pchip
四.曲线拟合
ployfit():多项式拟合函数
求得最小二乘拟合多项式系数
1.P=ployfit(X,Y,m)m:多项式系数
2.[P,S]=ployfit(X,Y,m)
3.[P,S,mu]=ployfit(X,Y,m)
根据样品数据X,Y产生一个m次多项式P及其在采样点误差数据S,mu是一个二元向量
mu(1)是mean(X),mu(2)是std(X)