N皇后(回溯法)

51. N 皇后 - 力扣(LeetCode)

参考:
51. N 皇后 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/n-queens/solutions/399111/51-n-queenshui-su-fa-jing-dian-wen-ti-xiang-jie-by/

题目描述

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

样例输入

示例 1:

输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

输入:n = 1
输出:[["Q"]]

提示:

  • 1 <= n <= 9

题解

约束条件

  • 不能同行
  • 不能同列
  • 不能同斜线

核心思想:

使用回溯法尝试遍历所有位置,其中for循环控制棋盘的列,递归深度控制棋盘的行。

由上图可以看到,回溯法中构造的树的高度就是矩阵的高,for循环控制矩阵的宽,也就是树宽,只要我们搜索到了树的叶子节点,说明就找到了皇后们的合理位置了

故而使用回溯法时,尝试对每个位置都放置一个皇后,当然放置之前要首先判断该位置是否“合法”,假如我们能够走到叶子结点,说明找到了一个可行方案,收集即可

代码

class Solution {
private:
    vector<vector<string>> res;
    //判断当前遍历到的位置是否合法
    bool isValid(int row,int col,vector<string>& chessbord,int n)
    {
        //检查列
        for(int i=0;i<row;i++)
        {
            if(chessbord[i][col]=='Q')
                return false;
        }

        //检查左上角
        for(int i=row-1,j=col-1;i>=0 && j>=0;i--,j--)
        {
            if(chessbord[i][j]=='Q')
                return false;
        }

        //检查右上角
        for(int i=row-1,j=col+1;i>=0 && j<n;i--,j++)
        {
            if(chessbord[i][j]=='Q')
                return false;
        }
        return true;
    }

public:
    void backing(int& n,int row,vector<string>& chessbord)
    {
        if(row==n)
        {
            res.push_back(chessbord);
            return ;
        }

        //for循环控制列
        for(int col=0;col<n;col++)
        {
            //判断当前是否“合法”,如果合法才能放置“皇后”
            if(isValid(row,col,chessbord,n))
            {
                chessbord[row][col]='Q';
                backing(n,row+1,chessbord);//递归控制行
                chessbord[row][col]='.';
            }
        }
    }
    vector<vector<string>> solveNQueens(int n) {
        vector<string> chessbord(n,string(n,'.'));
        backing(n,0,chessbord);
        return res;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值