自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(33)
  • 收藏
  • 关注

原创 GitHub与搜素相似论文源代码相关问题

GitHub与搜素相似论文源代码相关问题

2024-09-18 16:56:23 476

原创 MySQL索引、快慢SQL&查询性能优化、视图

MySQL索引、快慢SQL&查询性能优化、视图

2024-09-06 10:11:12 1420

原创 GitHub 与 Gitee 的代码存放策略<笔者的看法>

GitHub 与 Gitee 的代码存放策略

2024-09-06 09:49:38 431

原创 Python写入本地数据库与excel表参考模板(根据情况进行调整)

利用Python代码写入本地excel与sql数据库

2024-09-05 15:36:56 473

原创 SQL数据库分层模板代码(建议根据所需进行调整)

模板代码

2024-09-05 15:00:00 424

原创 给我10分钟带你了解数仓分层建模与企业DW表设计

数据仓库分层建模是通过分层设计(如ODS、DWD、DWS、ADS)来组织和处理数据,从而提高数据处理效率和查询性能,而企业项目中的宽表设计与搭建实战则关注如何在数据仓库中构建高效的宽表以优化查询和数据分析。

2024-09-05 09:38:12 1200

原创 lightgbm两种形式的简单训练

【代码】lightgbm两种形式的简单训练。

2024-07-21 16:40:37 237

原创 xgboost两种形式的简单训练

【代码】xgboost两种形式的简单训练。

2024-07-21 16:39:01 170

原创 3层神经网络的实现

3层神经网络的面向对象实现。

2024-06-18 09:24:32 414

原创 word2vec实战

Word2Vec 是一种将词语嵌入到向量空间中的算法,由 Tomas Mikolov 等人在 2013 年提出。它利用神经网络将词语映射到低维向量空间中,使得相似词语的向量在空间中更接近。这些词向量捕捉了词语的语义和句法信息,是许多自然语言处理任务中的基础。预测当前词语的上下文词语。通过上下文词语预测目标词语。预测上下文词语的当前词语。给定目标词语,预测其上下文词语。

2024-06-17 14:40:47 345

原创 NNLM模型实战

NNLM(Neural Network Language Model)是一种基于神经网络的语言模型,用于捕捉语言中的语义和句法关系。与传统的统计语言模型相比,NNLM 能更好地处理稀疏数据问题,并且能够捕捉到更复杂的语言结构。NNLM 模型通常包括以下几个部分:输入层(Input Layer):接受一个词或一段文本作为输入,通常使用词嵌入(Word Embeddings)来表示输入的词。嵌入层(Embedding Layer):将离散的词语转换为连续的向量表示,这些向量捕捉了词语的语义信息。

2024-06-14 09:58:43 338

原创 PCA_共现窗口矩阵

共现窗口矩阵是基于词语在文本中的共现关系构建的矩阵。具体而言,对于一个给定的词语,我们考察其在一定窗口范围内与其他词语的共现次数,从而构建词语间的共现矩阵。该矩阵可以反映词语间的上下文关系。

2024-06-13 10:45:12 189

原创 SVD实战

奇异值分解(Singular Value Decomposition, SVD)是一种强大的矩阵分解技术,广泛应用于数据分析、信号处理和机器学习等领域。SVD 将一个矩阵分解成三个矩阵的乘积,提供了对矩阵结构的深刻理解。

2024-06-13 10:15:59 168

原创 PCA实战

主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维技术,它通过线性变换将高维数据投影到低维空间,同时尽可能保留原始数据的主要特征。PCA 的目标是找到数据中方差最大的方向,这些方向称为主成分。1.标准化数据:PCA 对数据的尺度敏感,因此通常需要对数据进行标准化处理,使得每个特征的均值为0,标准差为1。2.计算协方差矩阵:协方差矩阵反映了数据中各特征之间的关系。3.计算协方差矩阵的特征值和特征向量:特征向量表示主成分的方向,特征值表示主成分的方差。

2024-06-13 10:00:30 331

原创 tfidf提取文档关键词实战

tfidf提取文档关键词实战

2024-06-12 10:03:51 856

原创 常见的损失函数

在机器学习和深度学习中,损失函数(Loss Function)用于评估模型的预测结果与真实结果之间的差距。选择合适的损失函数是训练模型的关键。均方误差(MSE)交叉熵损失(CEL)

2024-06-12 09:33:12 205

原创 非线性SVM模型

非线性支持向量机(SVM)是为了处理线性不可分数据而设计的。它通过使用核函数将数据映射到一个高维空间,在这个高维空间中,数据变得线性可分,从而实现分类。常见的核函数包括多项式核、径向基函数(RBF)核和 sigmoid 核等。非线性 SVM 的优化目标与线性 SVM 类似,非线性 SVM 通过引入核函数,将原始数据映射到高维空间,在高维空间中找到一个超平面来实现分类。

2024-06-11 14:45:17 332

原创 线性svm模型

线性支持向量机(SVM)是一种用于分类任务的监督学习模型。线性 SVM 通过寻找一个超平面来最大化数据点间的间隔,从而实现数据的分类。线性 SVM 特别适合处理高维数据和二分类问题。以下是对线性 SVM 模型的介绍及其在 Python 中的实现。1.超平面(Hyperplane): 在 n 维空间中,超平面是一个 n-1 维的平面,用于分割不同类别的数据点。在二维空间中,超平面是一条线;在三维空间中,超平面是一个平面。2.间隔(Margin): 超平面到最近数据点的距离。

2024-06-11 11:21:12 324

原创 Layer Normalization实战

在 Transformer 模型中,Layer Normalization(层归一化)是一种常见的技术,用于稳定训练过程,提高训练速度和模型性能。Layer Normalization 是在每一层的输入上进行标准化操作,使得每个输入的均值为 0,方差为 1,从而使训练过程更加稳定。稳定训练:通过标准化输入数据,Layer Normalization 可以加速训练过程,使得模型在训练时更加稳定。提高性能:在深层神经网络中,Layer Normalization 可以防止梯度消失或爆炸,从而提高模型性能。

2024-06-06 16:02:56 276

原创 sequence mask实战

在自回归生成任务中,模型在预测下一个词时只能利用当前词及其之前的词,而不能看到未来的词。Sequence Mask 通过将未来位置的注意力权重设为负无穷来实现这一点,这样在 softmax 操作后,这些位置的权重为零。在 Transformer 模型中,sequence mask 是一个重要的概念,尤其是在处理自回归模型(例如文本生成或翻译模型)的解码阶段时。Sequence Mask 通常在解码器的自注意力层中使用。它可以确保在计算每个位置的注意力时,只考虑当前位置及之前的位置,从而保持自回归特性。

2024-06-06 15:35:44 443

原创 padding_mask实战

Padding Mask 是一个布尔掩码矩阵,通常用于注意力机制中,来指示哪些位置是填充的。模型在计算注意力时会忽略这些填充位置,以避免对无意义的填充值进行处理,从而提高模型的有效性。

2024-06-06 15:25:05 416

原创 dropout实战

dropout:随机失活,在我们的神经网络中,对于使用dropout的那一层,随机的以一定的概率消除该层的神经单元,即把这层的一些神经单元的值设置为0。并把其他的值的除以(1-dropout)。假如我们的dropout为0.2,1-0.2=0.8。没失活的值除以0.8。

2024-06-06 10:36:39 231

原创 positional_encodings实战

Transformers之positional_encodings实战

2024-06-06 10:18:50 575

原创 jieba分词

jieba分词

2024-06-05 10:53:48 145

原创 梯度裁剪解决梯度问题

梯度裁剪解决梯度问题

2024-06-05 10:01:05 280

原创 Pytorch解决分类问题

Pytorch分类问题

2024-06-04 16:00:42 272

原创 Pytorch解决回归问题

Pytorch解决回归问题

2024-06-04 11:26:17 261

原创 pytorch建模的一般步骤

Pytorch建模的一般步骤

2024-06-04 10:20:33 486

原创 nn库的基本使用

nn库的原理与基本使用

2024-06-04 10:03:47 408

原创 Autograd

pytorch的Autograd的原理与例子

2024-06-03 16:00:05 289

原创 pytorch_查用API

介绍常用的pytorch的API

2024-06-03 15:15:27 260

原创 tensorflow通过callback提前停止训练

【代码】tensorflow通过callback提前停止训练。

2024-05-27 15:32:34 223

原创 航空发动机数据检测

图像为大分辨率的涡轮发动机的类型与不同的缺陷情况模型YOLO准备在基础进行改进准备融入注意力机制和改进损失函数,以改变整个网络结构实验流程:找到数据集自己标注-->建立缺陷数据库-->用模型进行训练-->性能评估-->模型对比-->消融实验-->搭建缺线检测平台。

2024-03-20 16:48:01 226 1

LLAMA3 微调-量化-部署-应用一条龙

内容概要: 本文档详尽地介绍了LLAMA3模型的全生命周期管理,包括从基础的模型下载与配置,到高级的微调、量化、部署以及实际应用。特别强调了RAG技术在知识库向量化中的应用,以及如何利用LLAMA3进行有效的自然语言处理任务。 适用人群: 本文档适合自然语言处理(NLP)领域的研究人员、开发者以及对AI模型部署感兴趣的技术人员。无论是希望提升模型性能的研究者,还是需要将模型集成到实际应用中的工程师,都能从本文档中获益。 使用场景及目标: 场景一:研究人员在进行NLP相关研究时,需要对LLAMA3模型进行微调以适应特定的任务需求。 场景二:开发者希望将LLlama3模型部署到生产环境中,需要了解如何进行模型量化和优化以减少资源消耗。 场景三:企业用户希望利用RAG技术构建知识库问答系统,需要指导如何整合LLAMA3模型与向量数据库。 其他说明: 本文档不仅提供了详细的步骤和代码示例,还包含了常见问题解答和最佳实践建议,旨在帮助用户更高效地使用LLAMA3模型。此外,文档还涉及了如何在Google Colab等云平台上进行操作,降低了入门门槛,使得更多人能够轻松上手。

2024-09-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除