线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+b,w为特征的回归系数,b为截距项。
回归是一种监督学习任务,给定训练数据D={x¡,y¡};i属于(1,N)。N为样本数目,x¡为第i个样本的输入特征,y¡为对应的输出、响应或标签。回归的目标就是学习一个从输入x得到输出y的函数,例y=kx + b。
一元线性回归模型
1、获取x,y的训练集,即{x¡,y¡} x[......],y[......]
2、使用最小二乘线性回归 from sklearn.linear_model import LinearRegression
3、使用默认配置初始化学习器实例 model = LinearRegression()
4、使用训练数据训练模型参数 model.fit(x,y)
执行以上步骤获得最小二乘线性回归模型。亦可通过可视化查看其散点图。
例:(1、2步骤未在此图附上)
更多请查看大佬:https://blog.csdn.net/iqdutao/article/details/109402570