CS224W-1

本文探讨了图表示学习和图机器学习在复杂网络中的应用,强调了输入图的表示方法(如无特征工程),并着重于节点层面的嵌入,以及如何处理文本和图像等非动态变化的多模态特征用于分类任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.图,复杂网络。实体间关系。communication networks

2.input:graph,represention,no feature engirneering.

outout:节点层面的embeding,分类?or feature or generate graph.

3.text,imag 固定顺序,有参考点。非动态变化的。have multimodel feature.

图表示学习和图机器学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值