基于STM32F1 MCU设计的智慧病房监测系统
摘要:本文设计了一种基于STM32F103C8T6单片机的智慧病房监测系统,该系统集成了MAX30102心率传感器模块、LMT70温度传感器、DHT11温湿度传感器模块、烟雾传感器模块和光敏电阻传感器模块,实现对病房环境参数和病人生理参数的实时监测。当监测数据超过预设阈值时,系统会触发报警提示。单片机通过MQTT协议与阿里云物联网平台进行数据交互,手机端APP可远程查看监控数据,实现病房环境的智能化管理。该系统具有实时监测、远程监控、报警提示等功能,为医疗服务提供了有力的技术支持。
关键词:STM32F103C8T6;智慧病房监测;传感器集成;MQTT协议;阿里云物联网平台
一、引言
随着医疗技术的不断进步和物联网技术的快速发展,智慧医疗成为医疗行业的重要发展方向。智慧病房监测系统作为智慧医疗的重要组成部分,能够实时监测病房内的环境参数和病人生理参数,为医护人员提供及时、准确的数据支持,从而提高医疗服务的质量和效率。本文设计了一种基于STM32F1 MCU的智慧病房监测系统,旨在实现对病房环境的全面监测和远程管理。
二、系统总体设计
(一)系统目标
本系统旨在通过集成多种传感器模块,实现对病房内温度、湿度、烟雾浓度、光照强度等环境参数以及病人心率、体温等生理参数的实时监测。当监测数据超过预设阈值时,系统能够自动触发报警提示,以便医护人员及时采取相应措施。同时,系统还支持手机端APP远程查看监控数据,实现病房环境的智能化管理。
(二)系统架构
本系统采用分层架构设计,主要分为硬件层、软件层和云端层。
-
硬件层
- 核心控制器:STM32F103C8T6单片机,负责数据采集、处理和通信控制。
- 传感器模块:包括DHT11温湿度传感器模块、烟雾传感器模块、光敏电阻传感器模块、MAX30102心率传感器模块、LMT70温度传感器,用于实时监测病房环境和病人生理参数。
- 通信模块:ESP8266 WiFi模块,实现与阿里云物联网平台的数据交互。
-
软件层
- 嵌入式系统:基于STM32CubeMX和Keil MDK等开发工具,开发嵌入式系统软件,实现数据采集、处理和通信功能。
- 手机端APP:开发基于Android或iOS的手机端APP,实现远程查看监控数据和接收报警提示。
-
云端层
- 阿里云物联网平台:用于存储和处理上传的数据,并提供手机端APP接口,实现远程监控和数据内容显示。
三、硬件设计
(一)主控芯片选择
STM32F103C8T6是一款基于ARM Cortex-M3内核的32位微控制器,具有丰富的外设资源和强大的处理能力。其最高工作频率可达72MHz,具有多个定时器、ADC、UART、SPI、I2C等接口,方便与各种传感器和通信模块连接。在本系统中,STM32F103C8T6作为核心控制器,负责数据采集、处理和通信控制。
(二)传感器模块设计
-
DHT11温湿度传感器模块
- 功能:用于实时监测病房内的温度和湿度。
- 工作原理:DHT11传感器内部包含一个湿度检测电容和一个NTC温度测量元件,通过单总线通信协议输出数字信号。
- 连接方式:DHT11模块通过单总线数字信号与STM32单片机连接,实现温湿度数据的采集。
-
烟雾传感器模块
- 功能:用于检测病房内的烟雾浓度。
- 工作原理:烟雾传感器采用气敏材料,当烟雾颗粒进入传感器时,会引起气敏材料电阻值的变化,从而输出相应的电信号。
- 连接方式:烟雾传感器模块通过模拟信号输出与STM32单片机连接,实现烟雾浓度的采集。
-
光敏电阻传感器模块
- 功能:用于监测病房内的光照强度。
- 工作原理:光敏电阻的阻值随入射光强的变化而变化,通过测量输出电压可以计算出光照强度。
- 连接方式:光敏电阻传感器模块通过模拟信号输出与STM32单片机连接,实现光照数据的采集。
-
MAX30102心率传感器模块
- 功能:用于实时监测病人的心率和血氧饱和度。
- 工作原理:MAX30102通过发射特定波长的光照射人体组织,并检测反射光或透射光的变化,可以计算出心率和血氧饱和度。
- 连接方式:MAX30102模块通过I2C接口与STM32单片机通信,实现数据的采集和传输。
-
LMT70温度传感器
- 功能:用于监测病人的体温。
- 工作原理:LMT70是一种高精度的模拟温度传感器,其输出电压与温度成线性关系。
- 连接方式:LMT70温度传感器通过模拟信号输出与STM32单片机连接,实现体温数据的采集。
(三)通信模块设计
本系统采用ESP8266 WiFi模块实现与阿里云物联网平台的数据交互。ESP8266模块具有体积小、功耗低、传输速度快等特点,支持UART接口与STM32单片机连接。通过配置ESP8266模块,可以使其连接到指定的WiFi网络,并通过MQTT协议与阿里云物联网平台进行通信。
四、软件设计
(一)嵌入式系统开发
-
开发环境搭建
- 安装STM32CubeMX和Keil MDK等开发工具。
- 使用STM32CubeMX进行项目初始化,配置系统时钟、GPIO、外设接口等参数。
- 在Keil MDK中编写和调试嵌入式系统软件。
-
主程序设计
- 系统初始化:包括时钟配置、GPIO初始化、传感器初始化、通信模块初始化等。
- 数据采集:通过ADC或I2C等接口读取传感器数据,并进行滤波和校准处理。
- 数据处理:对采集到的数据进行分析和处理,判断是否超过预设阈值。如果超过阈值,则触发报警机制,并通过串口或WiFi模块发送报警信息。
- 数据发送:将处理后的数据通过MQTT协议发送给阿里云物联网平台。
- 主循环:持续执行数据采集、处理和发送操作,确保系统实时性。
-
关键代码示例
- 传感器数据采集
c复制代码
void Sensor_Data_Collection(void) {
DHT11_Read_Data(); // 读取温湿度数据
Smoke_Sensor_Read_Data(); // 读取烟雾浓度数据
Light_Sensor_Read_Data(); // 读取光照强度数据
MAX30102_Read_Data(); // 读取心率和血氧数据
LMT70_Read_Data(); // 读取体温数据
}
- MQTT协议数据发送
c复制代码
void MQTT_Send_Data(char* topic, char* payload) {
MQTT_Packet packet;
packet.qos = QOS0;
packet.retained = 0;
packet.dup = 0;
packet.id = 0;
packet.payload = (void*)payload;
packet.payloadlen = strlen(payload);
MQTT_Publish(&mqttClient, topic, &packet);
}
- 报警机制
c复制代码
void Alarm_Mechanism(float value, float threshold) {
if (value > threshold) {
// 触发报警,发送报警信息
char alarmMessage[50];
sprintf(alarmMessage, "Alarm: Value %f exceeds threshold %f", value, threshold);
MQTT_Send_Data("alarm/topic", alarmMessage);
}
}
(二)手机端APP开发
-
开发环境搭建
- 选择合适的开发平台,如Android Studio或Xcode。
- 使用阿里云物联网平台提供的SDK进行开发。
-
APP功能设计
- 用户登录与注册:实现用户登录和注册功能,确保用户身份的安全性。
- 数据实时显示:通过MQTT协议订阅相关Topic,实时接收并显示病房环境和病人生理参数数据。
- 报警提示:当接收到报警信息时,通过声音、震动等方式提醒用户。
- 历史数据查询:提供历史数据查询功能,方便用户查看过去一段时间内的监测数据。
- 阈值设置:允许用户设置不同参数的阈值,以满足不同的监测需求。
-
关键界面设计
- 登录界面:提供用户名和密码输入框,以及登录按钮。
- 主界面:显示病房环境和病人生理参数数据的实时值,以及报警提示信息。
- 历史数据界面:以图表形式展示历史数据,方便用户分析数据变化趋势。
- 设置界面:提供阈值设置、报警方式选择等功能。
五、系统测试与验证
(一)测试环境搭建
- 搭建模拟病房环境,包括温湿度调节设备、烟雾发生器、光照调节设备等。
- 连接传感器模块、通信模块和STM32单片机,确保硬件连接正确。
- 配置阿里云物联网平台和手机端APP,确保通信正常。
(二)功能测试
-
环境参数监测测试
- 调节模拟病房环境的温湿度、烟雾浓度和光照强度,观察手机端APP是否实时显示正确的数据。
- 设置不同的阈值,测试系统是否能够正确触发报警提示。
-
生理参数监测测试
- 使用模拟设备或实际人体测试MAX30102心率传感器模块和LMT70温度传感器的准确性。
- 观察手机端APP是否实时显示正确的心率和体温数据。
- 设置不同的阈值,测试系统是否能够正确触发报警提示。
-
远程监控测试
- 通过手机端APP远程查看病房环境和病人生理参数数据。
- 测试手机端APP的报警功能是否正常工作。
- 测试手机端APP的历史数据查询功能是否正常工作。
(三)性能测试
- 测试系统的实时性,确保数据采集、处理和发送的延迟在可接受范围内。
- 测试系统的稳定性,长时间运行系统观察是否出现数据丢失、通信中断等问题。
- 测试系统的功耗,确保系统能够在电池供电的情况下长时间工作。
(四)测试结果分析
通过系统测试与验证,表明本系统能够实现对病房环境和病人生理参数的实时监测与远程监控。当监测数据超过预设阈值时,系统能够正确触发报警提示。手机端APP能够实时显示监控数据,并提供报警提示和历史数据查询功能。系统的实时性、稳定性和功耗均满足设计要求。
六、结论与展望
(一)结论
本文设计了一种基于STM32F1 MCU的智慧病房监测系统,通过集成多种传感器模块和通信模块,实现了对病房环境和病人生理参数的实时监测与远程监控。系统采用MQTT协议与阿里云物联网平台进行数据交互,手机端APP可以实时查看监控数据并接收报警提示。通过系统测试与验证,表明该系统具有实时监测、远程监控、报警提示等功能,且性能稳定、功耗较低,能够满足智慧病房监测系统的实际需求。
(二)展望
虽然本系统已经实现了基本的功能需求,但仍存在一些不足之处和可以改进的地方。未来可以从以下几个方面进行完善和优化:
- 增加传感器种类:可以添加更多的传感器,如空气质量传感器、声音传感器等,以更全面地监测病房环境。
- 优化数据处理算法:采用更先进的数据处理算法,提高数据采集的准确性和可靠性,减少误报和漏报的情况。
- 增强系统安全性:加强数据传输的安全性,如采用加密通信协议、身份认证等机制,确保病人数据的安全性和隐私性。
- 实现更多智能控制功能:如根据病房环境和病人生理参数自动调节病房设备(如空调、灯光、窗帘等),提高病房的智能化水平。
- 扩展手机端APP功能:如添加数据分析、趋势预测等功能,为医护人员提供更全面的数据支持和决策依据。同时,可以优化用户界面和交互设计,提高用户体验。