算法好难啊
码龄3年
关注
提问 私信
  • 博客:11,896
    11,896
    总访问量
  • 6
    原创
  • 271,904
    排名
  • 37
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2021-05-21
博客简介:

qq_58484580的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    148
    当月
    1
个人成就
  • 获得47次点赞
  • 内容获得20次评论
  • 获得124次收藏
  • 代码片获得103次分享
创作历程
  • 1篇
    2024年
  • 5篇
    2023年
成就勋章
兴趣领域 设置
  • Python
    python
  • 人工智能
    opencv目标检测神经网络视觉检测
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

《BoundaryFace: A mining framework with noise label self-correction for Face Recognition》文章+代码的解析

难例挖掘。
原创
发布博客 2024.02.28 ·
912 阅读 ·
20 点赞 ·
3 评论 ·
15 收藏

《TubeR: Tubelet Transformer for Video Action Detection》论文+代码分析

虽然没有完全复现出这篇文章的结果,但有学习到新的知识,这篇文章还是给动作检测提供很多新的思路的,总体来说还是有一定的参考价值,第一个就是编码的方式,不是直接编码,还有是frame聚合成clips所用的方法,等等。欢迎大家指正和探讨,以及解答我还存有疑惑的地方。
原创
发布博客 2023.09.16 ·
867 阅读 ·
3 点赞 ·
2 评论 ·
6 收藏

基于mediapipe的动作捕捉和人物模型的驱动

我实习做这个的时候,当时也找了很多资料,但很多资料都没有讲透,下面我就总结一下自己结合看代码后的感悟,还有一些我认为很重要的点。
原创
发布博客 2023.09.05 ·
4672 阅读 ·
12 点赞 ·
7 评论 ·
67 收藏

基于mediapipe的动作捕捉和unity的人物模型驱动

用到的人体关键点检测的算法是Google开发的基于深度学习的实时多媒体套件,汇集了人体、手部、人脸关键点追踪、物体检测、物体识别等多个流行的视觉任务的成果。整套 Mediapipe正如其名字,专门为便携设备上的多媒体应用设计,模型非常小,在笔记本手机上也能实时跑,跨平台、跨语言。mediapipe实时性是没什么问题。但是是以牺牲了质量为代价的,这种关键点检测一般是用来做动作识别,类似于运动app跳绳计数、判定瑜伽动作标不标准这种。用单目视觉来做人物模型的驱动,总差点意思。
原创
发布博客 2023.08.06 ·
3734 阅读 ·
7 点赞 ·
5 评论 ·
22 收藏

详细讲解: 动作检测中的v-mAP的计算

v-mAP的求法是参考了《Action Tubelet Detector for Spatio-Temporal Action Localization》中的求法,但这篇文章是基于caffe框架的,我熟悉的是pytorch,最终看到了一篇相近动作检测的文章,里面也是用了这篇文章的方法。先说一下数据的走向。输入模型的数据为[b_s,tb,c,h,w],例如:(8,2,3,300,300)就表示有抽取了8帧图片,2表示(当前帧和下一帧的图像数据),3表示三通道(rgb),剩下两维是宽和高。也就是输入模型的有。
原创
发布博客 2023.07.24 ·
604 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

最易懂的解释:目标检测中的评估指标(IoU,AP,mAP)

IoU是用来衡量两个box的重合度的,值越大重合度越高,求法简单来说就是交集/并集。
原创
发布博客 2023.07.06 ·
1056 阅读 ·
0 点赞 ·
3 评论 ·
5 收藏