- 博客(3)
- 资源 (4)
- 收藏
- 关注
原创 深度学习与神经网络(三)——深度学习与目标检测
每个 bb 有 5 个分量,分别是物体的中心位置 (𝑥,𝑦)和它的高(ℎ)和宽 (𝑤),以及这次预测的置信度。其中𝑁代表测试集中所有图片的个数, 𝑃(𝑘)表示在能识别出 𝑘个图片的时候Precision 的值,而 Δ𝑟(𝑘)则表示识别图片个数从 𝑘−1变化到 𝑘时(通过调整阈值) Recall 值的变化情况。FN(False Negative):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数。精度( Accuracy)::(𝑇𝑃+𝑇𝑁)/(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
2024-04-22 11:52:58 1618
原创 深度学习与神经网络(二)——卷积神经网络
如图所示为AlexNet 的网络模型,其网络架构一共有5 个卷积层、3 个maxpooling 层、2 个全连接层(值得注意的是三、四卷积层后没有Pooling 层),其输入矩阵为3 × 224 × 224 大小的三通道彩色图像。• C3 层(卷积层):使用16 个大小为5 × 5 的卷积核对输入的特征图进行卷积操作。• C1 层( 卷积层):使用6 个大小为5 × 5 的卷积核对输入图像进行卷积操作,卷积后得到的特征图尺寸为28 ,因此产生6 个大小为28 × 28 的特征图。
2024-04-07 22:25:30 1774
原创 深度学习与神经网络(一)——BP算法详解
BP(Back Proppagation)算法本质上是要解决输出端损失函数对网络参数的偏导问题,具体来说,就是通过复合函数的链式求导法则求得损失函数关于各层网络权值的偏导。这里引用陈仲铭《深度学习原理与实践》里的一个形象的比喻:为了便于理解反向传播算法,这里举一个不太恰当的例子。现在有一个口述绘画游戏,第1 个人看一幅画(输入数据),描述给第2 个人(隐层)……依次类推,到最后一个人(输出)的时候,画出来的面肯定与原画不太像(误差较大)。
2024-03-31 11:45:05 801
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人