- 博客(5)
- 收藏
- 关注
原创 神经网络与深度学习-屈桢深-学习总结(第七周)
分类问题与预测问题⚫ 图像分类:当前输入−>当前输出⚫ 时间序列预测:当前+过去输入−>当前输出自回归模型假设一个交易员想在当日的股市中表现良好,于是通过以下途径 预测𝑥𝑡 :随着观测,时间序列越来越长,过去太久的数据不必要,因此:保留一些对过去观测的总结ℎ𝑡, 并且同时更新预测和总结ℎ𝑡。这就产生了基于估计𝑥𝑡 ,以及更新的模型。
2024-05-03 14:32:46 597 1
原创 神经网络与深度学习-屈桢深-学习总结(第六周)
在广告、设计和媒体等领域,风格迁移技术也可以应用于视觉增强和品牌塑造,通过将公司或产品的标志性风格应用到图像中,营造出独特的视觉效果,增强品牌识别度和吸引力。每个bb有5个分量, 分别是物体的中心位置(𝑥, 𝑦)和它的高 (ℎ) 和宽 (𝑤) ,以及这次预测的置信度。其中𝑁代表测试集中所有图片的个数,𝑃(𝑘)表示在能识别出𝑘个图片的时候 Precision的值,而 Δ𝑟(𝑘)则表示识别图片个数从𝑘 − 1变化到𝑘时(通过调整阈 值)Recall值的变化情况。R(召回率): 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)。
2024-04-21 12:32:06 512 1
原创 神经网络与深度学习-屈桢深-学习总结(第五周)
➢ 卷积层主要有3×3的过滤器,并遵循两个简 单的设计规则:①对输出特征图的尺寸相同的 各层,都有相同数量的过滤器;ResNet具有34层的权重层,有36亿 FLOPs,只是VGG-19(19.6亿FLOPs)的18%。⚫ 每个神经元对应5*5+1个参数,共6个feature map, 28*28个神经元,因此共有 (5*5+1)*6*(28*28)=122,304连接。➢ 改进 -网络规模进一步增大,参数数量约为1.38亿 -由于各卷积层、池化层的超参数基本相同,整体结构呈现出规整的特点。
2024-04-06 12:59:30 664
原创 神经网络与深度学习-屈桢深-学习总结(第四周)
下面讨论的都是此类网络。然后执行 K 次模型 训练和验证,每次在 K−1 个子集上进行训练, 并在剩余的一 个子集(在该轮中没有用于训练的子集)上进行验证。线性分类与线性回归差别: 输出意义不同:属于某类的概率回归具体值 参数意义不同:最佳分类直线最佳拟合直线 维度不同:前面的例子中,一个是一维的回归,一个是二维 的分类。如果是二分类问题,则为0和1,或者是属于某类的 概率,即0-1之间的数。多层前馈网络的反向传播 (BP)学习算法,简称BP算法,是有导 师的学习,它是梯度下降法在多层前馈网中的应用。
2024-03-31 14:00:13 898 1
原创 计算机系统大作业
计算机系统大作业题 目程序人生-Hello’s P2P 专 业 航天学院学 号 7203610608班 级2036016学 生 贾思睿指 导 教 师史先俊计算机科学与技术学院2022年5月摘 要摘要是...
2022-05-20 21:59:56 1245 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人