MulSen-AD:异常检测最新多种模态(RGB 红外 点云)数据集

下载链接:https://github.com/ZZZBBBZZZ/MulSen-AD

数据大小:7G

简介:MulSen-AD是由上海科技大学和密歇根大学安娜堡分校等机构联合创建的多传感器异常检测数据集,专门用于工业应用。该数据集整合了RGB图像、激光扫描的3D点云数据和锁相红外热成像数据,涵盖了15种工业产品,包含多种真实世界的异常情况。数据集的创建过程包括多传感器数据采集、处理和标注,确保了数据的多样性和准确性。MulSen-AD数据集的应用领域主要集中在工业质量检测,旨在通过多传感器融合技术提高异常检测的准确性和鲁棒性。

1.制作工具

2.部分数据展示

3.总的数据

├── button_cell # 纽扣
│   ├── Infrared
│   │        ├──GT
│   │        │   ├── color
│   │        │   ├── foreign_body
│   │        │   ├── good
│   │        │   ├── hole
│   │        │   └── scratch
│   │        ├── test
│   │        │    ├── color
│   │        │    ├── foreign_body
│   │        │    ├── good
│   │        │    ├── hole
│   │        │    └── scratch
│   │        └── train
│   ├── Pointcloud
│   │        ├──GT
│   │        │   ├── color
│   │        │   ├── foreign_body
│   │        │   ├── good
│   │        │   ├── hole
│   │        │   └── scratch
│   │        ├── test
│   │        │    ├── color
│   │        │    ├── foreign_body
│   │        │    ├── good
│   │        │    ├── hole
│   │        │    └── scratch
│   │        └── train
│   └── RGB
│        ├──GT
│        │   ├── color
│        │   ├── foreign_body
│        │   ├── good
│        │   ├── hole
│        │   └── scratch
│        ├── test
│        │     ├── color
│        │     ├── foreign_body
│        │     ├── good
│        │     ├── hole
│        │     └── scratch
│        └── train
├── capsule # 胶囊
├── cotton # 棉布
├── cube # 方块
├── flat_pad # 平垫
├── light # 灯泡
├── nut # 螺母
├── piggy  # 猪
├── plastic_cylinder  # 塑料气缸
├── screen  # 屏幕
├── screw # 螺丝
├── solar_panel  # 太阳能面板
├── spring_pad  # 垫片
├── toothbrush  # 牙刷
├── zipper  # 拉链
├── license.txt
└── readme.txt

4.文章摘要

物体异常检测对于工业质量检验至关重要,然而传统的单传感器方法面临关键限制。它们无法捕捉到广泛的异常类型,因为单个传感器通常受限于外部外观、几何结构或内部属性之一。为了克服这些挑战,我们引入了MulSen-AD,这是首个为工业应用量身定制的高分辨率、多传感器异常检测数据集。MulSen-AD统一了来自RGB摄像头、激光扫描仪和锁相红外热成像的数据,有效地捕捉了外部外观、几何变形和内部缺陷。该数据集涵盖了15种具有多样化、真实世界异常的工业产品。我们还展示了MulSen-AD Bench,这是一个用于评估多传感器方法的基准测试,并提出了MulSen-TripleAD,这是一个决策级融合算法,它集成了这三种模态以实现鲁棒的、无监督的物体异常检测。我们的实验表明,多传感器融合显著优于单传感器方法,实现了96.1%的物体级检测准确率。这些结果突显了整合多传感器数据对于全面工业异常检测的重要性。

5.对比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值