考虑泊松方程边值问题
u(0,y)=1,u(1,y)=e^y 0≦y≦1,
u(x,0)=1,u(x,1)=e^x 0≦x≦1,
d^2u/dx^2+d^2u/dy^2=
(x^2+y^2)e^xy
(1)用N=10的正方形网格离散化,得到n=100的线性方程组.列出
考虑泊松方程边值问题
这问题的解是u(x,y)=e^xy
(1)用N=10的正方形网格离散化,得到n=100的线性方程组.列出五点差分格式的线性方程组.
(2)用雅可比迭代法和SOR迭代法(ω=1,1.25,1.50,1.75),迭代初值uij(0)=1(i,j=1,2,…,N).计算到‖u(k)-u(k-1)‖∞<10-5时停止,给出迭代次数k,u(k)和‖u(k)-u‖∞,u是解函数u(x,y)=exy在点(xi,yj)上的分量生成的向量.
(3)用CG方法解(1)的线性方程组,要求同(2),比较计算结果.