问题:
真人版密室逃脱游戏风靡全球,不仅在麻瓜世界广受欢迎,而且在魔法世界也十分流行。考虑到魔法世界的人们会使用能够瞬间移动的魔法,密室逃脱游戏在被引进魔法世界时作了一些修改:“密室迷宫”由排成n行m列的nm间房间组成,每间房间会被标记为“危险的”或者“安全的”,参加者在左上角的房间中开始游戏,通过使用红绿蓝三种不同的魔法在房间迷阵中移动(只能移动到“安全的”房间,不能移动到“危险的”房间),最后到达右下角的房间即获得胜利。三种不同魔法的效果如下:
“红魔法”(r):瞬间移动到所在房间右边的第二间房;
“绿魔法”(g):瞬间移动到所在房间右下方的房间;
“蓝魔法”(b):瞬间移动到所在房间下方的第三间房;
魔法师小L最近也迷上了这款游戏,他在游戏开始前拿到了房间地图(“安全的”房间用1标记,“危险的”房间用0标记),并被告知只能使用a次红魔法,b次绿魔法和c次蓝魔法(数据保证n=1+b+3*c;m=1+b+2*a),那么请聪明的你告诉小L,他能不能胜利?如果可以,该怎么使用魔法才能安全的到达右下角的房间?
输入格式
输入第一行为五个整数n、m、a、b、c,用空格隔开;
第二行到第n+1行每行m个整数(0或1),表示房间地图(数据保证地图左上角和右下角的整数为1)
输出格式
若小L不能够到达终点,则输出-1;
若小L能够到达终点,则输出字典序最大的使用的魔法序列(用r、g、b表示,不用空格空行)。
样例输入
12 9 3 2 3
1 1 1 1 1 0 0 1 1
0 1 1 0 0 1 1 1 1
1 1 1 1 1 0 0 0 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 0 1 1 0
1 1 1 1 1 1 0 1 1
0 1 1 0 0 1 1 1 0
0 0 0 0 1 0 1 1 1
0 1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 1 1
1 1 1 1 1 1 0 1 0
0 1 1 1 1 1 0 1 1
样例输出
rrgrgbbb
数据规模和约定
1≤n,m≤1000
代码:
#include<stdio.h>
#define max 1010 //定义数据最大限度//
typedef struct node
{
int value; //迷宫的单元//
int Flag; //记录该点是否走过//
} Node;
int n,m,flag=0,path=0; //n是长,m是宽,flag判断是否走过了终点,path记录走过的步数//
Node a[max][max]; //定义迷宫数组//
char b[max]; //记录走的路程//
int tx[3]= {0,1,3}; //移动的坐标//
int ty[3]= {2,1,0};
char str[3]= {'r','g','b'}; //题目要求的三个方向和tx与ty对应//
int x[3]; //三个方向最大移动的次数//
int dfs(int i,int j)
{
if(i==n&&j==m) //先判断是不是到了终点//
{
flag=1;
return true;
}
if(x[0]<0||x[1]<0||x[2]<0) //判断是否超了最大移动次数//
{
return false;
}
if(i>n||j>m) //是否越界,也算是剪枝的一种//
{
return false;
}
if(a[i][j].Flag==1) //判断该点是否走过//
{
return false;
}
a[i][j].Flag=1; //一旦进来并且没有访问过,那就将该点标记为访问//
int Tx,Ty,l; //Tx为横移,Ty为竖移//
path++; //path记录步数//
for(l=0; l<=2; l++)
{
Tx=i+tx[l];
Ty=j+ty[l];
if(a[Tx][Ty].value==1&&a[Tx][Ty].Flag==0) //判断下一步是否可以移动//
{
b[path]=str[l]; //进来代表可以,所以把该步赋值给b//
x[l]--; //然后将这步减一//
if(dfs(Tx,Ty)==true) //如果该点可以走完那就返回true//
{
return true;
}
x[l]++; //如果该点行不通返回赋的其他所有值,并且返回false//
}
}
a[i][j].Flag=0;
path--;
return false;
}
int main()
{
scanf("%d%d",&n,&m);
for(int p=0; p<=2; p++)
{
scanf("%d",&x[p]);
}
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
scanf("%d",&a[i][j].value);
a[i][j].Flag=0;
}
}
dfs(1,1);
if(flag==1)
{
for(int k=1; k<=path; k++)
{
printf("%c",b[k]);
}
}
else
{
printf("-1");
}
return 0;
}