DP:股票买卖

DP: 股票买卖

Leetcode 121. Best Time to Buy and Sell Stocks

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() < 2) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(2, 0));
        // initialize 
        dp[0][0] = -prices[0]; // hold or buy stock
        dp[0][1] = 0; // no stock on hand or sell
        for (int i = 1; i < prices.size(); i ++)
        {
            // rest or buy
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            // rest or sell
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[dp.size() - 1][1];
    }
};

Leetcode 122. Best Time to Buy and Sell Stocks II

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() < 2) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(2, 0));
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < prices.size(); i ++)
        {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);// hold stock or buy stock??
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[dp.size() - 1][1];
    }
};

Leetcode 123. Best Time to Buy and Sell Stocks III

状态有三个:第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态

dp[i][k][0] = max(dp[i - 1][k][0], dp[i - 1][k - 1][1] - prices[i])
			= max(rest, buy)
  1. 我昨天持有股票,且截止到昨天的最大交易次数限制为k,然后今天选择rest,所以还持有昨天就持有的股票,最大交易次数限制为k
  2. 我昨天没有持有股票,且昨天最大交易次数限制为 k - 1, 今天我选择buy,所以今天持有股票,最大交易次数为k
dp[i][k][1] = max(dp[i - 1][k][1], dp[i - 1][k][0] + prices[i])
			= max(rest, sell)
  1. 我昨天没有持有股票,且截止到昨天的最大交易次数限制为k,然后今天选择rest,所以今天还是没有持有股票,最大交易次数限制为k
  2. 我昨天持有股票,且昨天最大交易次数限制为 k, 今天我选择sell,所以今天没有持有股票,最大交易次数仍为k
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() < 2) return 0;
        vector<vector<vector<int>>> dp(prices.size(), vector<vector<int>>(3, vector<int>(2, 0)));
        // dp[i][j][k] = ith day, jth transactions, k = 0 => rest or buy, k = 1 => rest or sell
        
        for (int i = 0; i < prices.size(); i ++)
        {
            for (int j = 2; j >= 1; j --)
            {
                if (i - 1 == -1)
                {
                    dp[i][j][0] = -prices[i];
                    continue;
                }
                dp[i][j][0] = max(dp[i - 1][j][0], dp[i - 1][j - 1][1] - prices[i]);
                dp[i][j][1] = max(dp[i - 1][j][1], dp[i - 1][j][0] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2][1];
    }
};

Leetcode 188. Best Time to Buy and Sell Stock IV

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        if (prices.size() < 2) return 0;
        if (prices.size() / 2 < k)
        {
            vector<vector<int>> dp(prices.size(), vector<int>(2, 0));
            dp[0][0] = -prices[0];
            dp[0][1] = 0;
            for (int i = 1; i < prices.size(); i ++)
            {
                dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);// hold stock or buy stock??
                dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
            }
            return dp[dp.size() - 1][1];
        }
        vector<vector<vector<int>>> dp(prices.size(), vector<vector<int>>(k + 1, vector<int>(2, 0)));


        for (int i = 0; i < prices.size(); i ++)
        {
            cout << i << endl;
            for (int j = 1; j <= k; j ++)
            {
                
                if (i - 1 == -1)
                {
                    dp[i][j][0] = -prices[i];
                    continue;
                }
                dp[i][j][0] = max(dp[i - 1][j][0], dp[i - 1][j - 1][1] - prices[i]);
                dp[i][j][1] = max(dp[i - 1][j][1], dp[i - 1][j][0] + prices[i]);
            }
        }
        return dp[dp.size() - 1][k][1];
    }
};

Leetcode 309. Best Time to Buy and Sell Stock with Cooldown

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() < 2) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(2, 0));
        dp[0][0] = -prices[0];
        dp[1][0] = max(dp[0][0], -prices[1]);
        dp[1][1] = max(dp[0][1], dp[0][0] + prices[1]);
        for (int i = 2; i < prices.size(); i ++)
        {
            dp[i][0] = max(dp[i - 1][0], dp[i - 2][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[dp.size() - 1][1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值