- 博客(3)
- 收藏
- 关注
原创 person re-identification (re-ID)论文学习
翻译Person重识别(re-ID)通常被视为一个图像检索问题,它需要匹配来自不同摄像头的行人。给定一个感兴趣的人(查询),人的再识别就能确定该人是否被另一个摄像头观察到过。这一领域的最新进展归功于两个因素:1) 大规模行人数据集的可用性。这些数据集包含了行人的一般视觉差异,并提供了全面的评估[2]、[3]。2)使用卷积神经网络(CNN)对行人进行学习嵌入。最近,卷积神经网络(CNN)在学习最先进的特征嵌入或深度度量方面显示出了潜力
2024-10-26 05:20:59
1748
原创 (LLC)Locality-constrained Linear Coding for Image Classification
传统的基于特征袋(bag-of-features, BoF)的SPM方法需要非线性分类器来实现良好的图像分类性能。LLC论文提出了一种简单而有效的编码方案,称为位置约束线性编码(LLC),以取代传统SPM中的VQ编码。LLC利用局域约束将每个描述符投影到其局部坐标系中,投影坐标通过最大池化进行集成以生成最终表示。使用线性分类器,所提出的方法的性能明显优于传统的非线性SPM,在几个基准测试中取得了最先进的性能。
2024-06-29 22:33:16
1863
原创 数据挖掘-学习笔记1
数据挖掘(Data Mining,DM)是指从大量的有噪声的、不完全的、模糊的和随机的数据中,提取出隐含在其中的事先不知道但具有潜在利用价值的信息的过程。主要包含以下几层含义:1.数据必须真实的、大量且含有噪声的。2.发现的是用户感兴趣的可以接受、理解、运用的知识。3.仅支持特定的问题,并不要求放之四海而皆准的知识。
2024-06-28 17:50:16
1610
1
CVPR 2010 用于图像分类的位置约束线性编码 英文原版论文
2024-06-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人