新年第三题

150. 逆波兰表达式求值

根据 逆波兰表示法,求表达式的值。

有效的算符包括 +-*/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

注意 两个整数之间的除法只保留整数部分。

可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。

示例 1:

输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:

输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

要解这道题要先了解逆波兰式,即将a op b 的表达式变为'a''b'op的形式。

因为逆波兰式严格遵守从左到右的原则,而且观察实例可得,该式子的运算符号,存在某种就近原则,将距离一个符号最近的两个数字进行运算,就可以避免原本中缀式中存在的括号增加运算的复杂度。

    public int evalRPN(String[] tokens) {
        int[] Account=new int[tokens.length];
        int index= -1;
        for (String PutIn : tokens) {
            switch (PutIn) {
                case "+":
                    index--;
                    Account[index] += Account[index + 1];
                    break;
                case "-":
                    index--;
                    Account[index] -= Account[index + 1];
                    break;
                case "*":
                    index--;
                    Account[index] *= Account[index + 1];
                    break;
                case "/":
                    index--;
                    Account[index] /= Account[index + 1];
                    break;
                default:
                    index++;
                    Account[index] = Integer.parseInt(PutIn);
                    break;
            }
        }
        return Account[index];
    }

原本我是用if...else...代替switch...case...。但是switch可以提高运算速度,也可以使得程序更加轻便。 所以这里采用了官方给出的switch的格式。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值