2021-07-13链栈

C语言-链栈实现及部分功能
    初始化链栈
    销毁链栈
    清空栈
    判断栈是否为空
    得到栈顶元素
    进栈
    出栈

//数据类型
typedef int ElemType;

//定义数据结点
typedef struct node
{
	ElemType data;
	struct node *next;
	struct node *prev;
}Node;

//定义头结点
typedef struct head
{
	Node *top;
	Node *bottom;
	int num;
}Head;
/*
	初始化链栈
*/
Head *Init_LinkStack(void)
{
	Head *s = (Head *)malloc(sizeof(Head));
	s->top = NULL;
	s->bottom = NULL;
	s->num = 0;
	return s;
}
/*
	销毁链栈
*/
int DestoryStack(Head *s)
{
	if(s == NULL)
	{
		return 0;
	}
	
	Clear_Stack(s);

	free(s);
	return 1;
}
/*
	清空栈
*/
int Clear_Stack(Head *s)
{	
	if(s == NULL)
	{
		return 0;
	}

	Node *p = s->top;
	while(p)
	{
		s->top = p->prev;
		p->prev = NULL;
		(s->top) ? (s->top->next = NULL) : NULL;

		free(p);
		p = s->top;
	}

	s->num = 0;
	return 1;
}
/*
	判断栈为空
	为空返回1,不为空返回0
	
*/
int StackEmpty(Head *s)
{
	if(s == NULL || s->num == 0)
	{
		return 1;
	}
	else
	{
		return 0;
	}
}
/*
	得到栈中元素个数
*/
int StackLenth(Head *s)
{
	return s->num;
}
/*
	得到栈顶元素
*/
int GetStack(Head *s, ElemType *e)
{
	if(s == NULL || s->num ==0)
	{
		return 0;
	}
	*e = s->top->data;
	return 1;
}
/*
	进栈
*/
int Push(Head *s, ElemType e)
{
	if(s == NULL)
	{
		return 0;
	}
	Node *p = (Node *)malloc(sizeof(Node));
	p->data = e;
	p->next = p->prev = NULL;

	if(s->num == 0)
	{
		s->bottom = s->top = p;
	}
	else
	{
		s->top->next = p;
		p->prev = s->top;
		s->top = p;
	}
	s->num++;
	return 1;
	
}
/*
	出栈
*/
int Pop(Head *s, ElemType *e)
{
	if(s == NULL || StackEmpty(s))
	{
		return 0;
	}

	Node *p = s->top;

	s->top = p->prev;
	(s->top) ? (s->top->next = NULL) : NULL;
	p->prev = NULL;

	*e = p->data

	free(p);
	s->num--;

	return 1;
	
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值