关于排序的算法

本文详细介绍了几种常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序和堆排序,阐述了它们的基本思想、实现步骤以及时间复杂度和空间复杂度。对于每种排序算法,都提供了C++和Java的代码实现,并附有注释和解释。
摘要由CSDN通过智能技术生成

关于排序算法有如下分类

 常用的几种排序算法有以下几个:

1.冒泡排序(Bubble Sort):

通过比较相邻元素的大小,依次交换相邻元素的位置,直到所有元素按照从小到大(或从大到小)的顺序排列。

冒泡排序是一种基本的排序算法,它的基本思想是通过不断比较相邻的两个元素,将较大(或较小)的元素向后交换,从而达到排序的目的。具体实现如下:

1.比较相邻的元素。如果第一个比第二个大,就交换它们两个。

2.对每一对相邻的元素进行比较,从第一对到最后一对。这样,最后的元素应该是最大的数。

3.针对所有的元素重复以上的步骤,除了最后一个。

4.持续每次对越来越少的元素重复上述步骤,直到没有任何一对数字需要比较。

下面是C++实现冒泡排序的 Java 代码实现

下面是Java实现冒泡排序的 Java 代码实现

​
public static void bubbleSort(int[] arr) {
    int temp;//临时变量
    boolean flag;//标识变量,表示是否进行过交换
    //外层循环控制排序趟数
    for (int i = 0; i < arr.length - 1; i++) {
        flag = false;//每次开始排序前,都设置flag为未排序过
        //内层循环控制每一趟排序多少次
        for (int j = 0; j < arr.length - 1 - i; j++) {
            if (arr[j] > arr[j + 1]) {//如果前面的数比后面的数大,则交换
                temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
                flag = true;//只要有交换,flag就置为true
            }
        }
        if (!flag) {//如果没有交换过元素,则已经有序,退出循环
            break;
        }
    }
}

​

2.插入排序(Insertion Sort)

将一个元素插入到已排好序的数组中,使得插入后的数组仍然有序。

当我们使用插入排序算法时,我们将一个元素插入到已经排好序的数组中,使得插入后的数组仍然有序。假设我们在排序过程中,待排序的数组L[1...n]在某个时刻的状态如下:

我们需要将元素L(i)插入到已经有序的子序列L[1...i-1]中。为了完成这个操作,我们需要执行以下步骤:

  1. 查找L(i)在L[1...i-1]中的插入位置k。
  2. 将L[k...i-1]中的所有元素依次后移一个位置。
  3. 将L(i)复制到L(k)。

为了实现对数组L[1...n]的排序,我们可以将L(2)~L(n)依次插入到前面已经排好序的子序列中,初始时,我们可以将L[1]视为已经排好序的子序列。上述操作执行n-1次就能得到一个有序的数组。插入排序通常采用就地排序的方式,因此空间复杂度为O(1)。在从后向前的比较过程中,我们需要反复将已经排好序的元素逐步向后移动,为新元素提供插入空间。

 

 

以下是插入排序算法的C语言和Java代码实现,附有注释和讲解:

C语言代码实现:

#include <stdio.h>

void insertion_sort(int arr[], int n) {
    int i, j, key;
    for (i = 1; i < n; i++) {
        key = arr[i];
        j = i - 1;
        // 将比key大的元素向后移动,为key腾出位置
        while (j >= 0 && arr[j] > key) {
            arr[j+1] = arr[j];
            j--;
        }
        arr[j+1] = key;
    }
}

int main() {
    int arr[] = {5, 2, 4, 6, 1, 3};
    int n = sizeof(arr) / sizeof(arr[0]);
    insertion_sort(arr, n);
    for (int i = 0; i < n; i++) {
        printf("%d ", arr[i]);
    }
    return 0;
}

Java代码实现:

public class InsertionSort {
    public static void insertionSort(int[] arr) {
        int n = arr.length;
        for (int i = 1; i < n; i++) {
            int key = arr[i];
            int j = i - 1;
            // 将比key大的元素向后移动,为key腾出
            while (j >= 0 && arr[j] > key) {
                arr[j+1] = arr[j];
                j--;
            }
            arr[j+1] = key;
        }
    }

    public static void main(String[] args) {
        int[] arr = {5, 2, 4, 6, 1, 3};
        insertionSort(arr);
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
    }
}

注释和讲解:

在这两份代码中,我们都定义了一个名为insertion_sort(C语言)或insertionSort(Java)的函数来实现插入排序算法。在函数内部,我们使用了两个循环来实现排序。外层循环从第二个元素开始,依次将每个元素插入到前面已经排好序的子序列中。内层循环则用来将比当前元素大的元素向后移动,为当前元素腾出位置。

在C语言代码中,我们使用了一个while循环来将比当前元素大的元素向后移动。当找到一个比当前元素小的元素时,我们就将当前元素插入到这个元素的后面。在Java代码中,使用了一个for循环来实现相同的功能。当找到一个比当前元素小的元素时,我们就将当前元素插入到这个元素的后面。

在插入排序算法中,我们需要使用两个循环来完成排序,因此时间复杂度为O(n^2)。但是,由于插入排序算法具有就地排序的特点,因此空间复杂度为O(1)。

3.选择排序(Selection Sort)

每次选择数组中最小(或最大)的元素,将其放在数组的起始位置,然后再在剩余的元素中选择最小(或最大)的元素,放在已排序元素的末尾,直到所有元素有序。

假设排序元素为L【1,2.....n】   括号中代表元素次序1就是第一个元素,n就是第n各元素。

选择排序的基本思想是从第一个元素开始依次与其余元素对比,比值小则换位,然后取第二个元素依次向后继续比较大小,与之小则换位。选择排序的每一轮都会选择未排序序列中的最小元素,将其与未排序序列的第一个元素进行交换,从而不断缩小未排序序列的范围。在上面的例子中,选择排序的第一轮中,4和序列中的其他元素进行比较,找到最小的元素1,然后将4和1进行交换,因此4与1进行了交换。

#include <stdio.h>

void selection_sort(int arr[], int len) {
    for (int i = 0; i < len - 1; i++) {  // 外层循环控制排序轮数
        int min_index = i;  // 记录最小值的下标
        for (int j = i + 1; j < len; j++) {  // 内层循环查找最小值
            if (arr[j] < arr[min_index]) {
                min_index = j;
            }
        }
        if (min_index != i) {  // 如果最小值不是当前位置,则交换两个位置的元素
            int temp = arr[i];
            arr[i] = arr[min_index];
            arr[min_index] = temp;
        }
    }
}

int main() {
    int arr[] = { 5, 3, 8, 4, 2, 7, 1, 6 };
    int len = sizeof(arr) / sizeof(arr[0]);
    selection_sort(arr, len);
    for (int i = 0; i < len; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");
    return 0;
}

Java的选择排序实现:

public class SelectionSort {
    public static void selectionSort(int[] arr) {
        int len = arr.length;
        for (int i = 0; i < len - 1; i++) {  // 外层循环控制排序轮数
            int minIndex = i;  // 记录最小值的下标
            for (int j = i + 1; j < len; j++) {  // 内层循环查找最小值
                if (arr[j] < arr[minIndex]) {
                    minIndex = j;
                }
            }
            if (minIndex != i) {  // 如果最小值不是当前位置,则交换两个位置的元素
                int temp = arr[i];
                arr[i] = arr[minIndex];
                arr[minIndex] = temp;
            }
        }
    }

    public static void main(String[] args) {
        int[] arr = {5, 3, 8, 4, 2, 7, 1, 6};
        selectionSort(arr);
        for (int i : arr) {
            System.out.print(i + " ");
        }
        System.out.println();
    }
}

4快速排序(Quick Sort):

是一种高效的排序算法,它采用分治的思想,将一个大问题分解成若干个小问题来解决。快速排序的基本思想是:选择一个基准元素,将数组中小于基准元素的元素放在基准元素的左边,将大于基准元素的元素放在基准元素的右边,然后递归地对左右两个子数组进行排序,最终将整个数组排序。

快速排序的具体实现过程如下:

  1. 选择一个基准元素,一般选择第一个元素或者最后一个元素;
  2. 将数组中小于基准元素的元素放在基准元素的左边,大于基准元素的元素放在基准元素的右边;
  3. 对左右两个子数组分别递归地进行快速排序,直到子数组的长度为1或0。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn),是一种非常高效的排序算法。

 

以下是快速排序的C语言实现,附有注释和讲解:

#include <stdio.h>

void quick_sort(int arr[], int left, int right) {
    if (left >= right) {  // 如果左右指针相遇,则返回
        return;
    }
    int i = left, j = right, pivot = arr[left];  // 初始化左右指针和基准元素
    while (i < j) {
        while (i < j && arr[j] >= pivot) {  // 从右往左找第一个小于基准元素的数
            j--;
        }
        if (i < j) {
            arr[i++] = arr[j];  // 将该数放到左边
        }
        while (i < j && arr[i] < pivot) {  // 从左往右找第一个大于等于基准元素的数
            i++;
        }
        if (i < j) {
            arr[j--] = arr[i];  // 将该数放到右边
        }
    }
    arr[i] = pivot;  // 将基准元素放到正确的位置
    quick_sort(arr, left, i - 1);  // 对左边的序列进行快速排序
    quick_sort(arr, i + 1, right);  // 对右边的序列进行快速排序
}

int main() {
    int arr[] = { 5, 3, 8, 4, 2, 7, 1, 6 };
    int len = sizeof(arr) / sizeof(arr[0]);
    quick_sort(arr, 0, len - 1);
    for (int i = 0; i < len; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");
    return 0;
}

c复制代码

注释:

  • void quick_sort(int arr[], int left, int right):快速排序函数,参数包括待排序数组、左指针和右指针。
  • if (left >= right):如果左右指针相遇,则返回。
  • int i = left, j = right, pivot = arr[left]:初始化左右指针和基准元素。
  • while (i < j):当左右指针未相遇时,进行以下操作:
    • while (i < j && arr[j] >= pivot):从右往左找第一个小于基准元素的数。
    • if (i < j):如果找到了,则将该数放到左边。
    • while (i < j && arr[i] < pivot):从左往右找第一个大于等于基准元素的数。
    • if (i < j):如果找到了,则将该数放到右边。
  • arr[i] = pivot:将基准元素放到正确的位置。
  • quick_sort(arr, left, i - 1):对左边的序列进行快速排序。
  • quick_sort(arr, i + 1, right):对右边的序列进行快速排序。

快速排序的时间复杂度为O(nlogn),是一种高效的排序算法。

以下是基础的快速排序的Java实现代码,同样加上了注释和讲解:

public class QuickSort {
    public static void main(String[] args) {
        int[] arr = {3, 1, 5, 2, 4, 9, 7, 6, 8}; // 定义一个包含9个元素的整型数组

        quickSort(arr, 0, arr.length - 1); // 调用快速排序算法对数组进行排序

        System.out.print("Sorted integers: "); // 输出排序后的整数
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " "); // 依次输出数组中的每个元素
        }
    }

    /**
     * 快速排序算法
     * @param arr 待排序的数组
     * @param left 数组的左边界
     * @param right 数组的右边界
     */
    public static void quickSort(int[] arr, int left, int right) {
        if (left >= right) { // 如果左边界大于等于右边界,直接返回
            return;
        }

        int i = left, j = right; // 定义两个指针i和j,分别指向数组的左右两端
        int pivot = arr[left]; // 选择第一个元素作为基准元素

        while (i < j) { // 循环执行以下操作,直到i >= j
            while (i < j && arr[j] >= pivot) { // 从右向左找到第一个小于基准元素的元素
                j--;
            }
            if (i < j) { // 如果i < j,将该元素移到左边
                arr[i++] = arr[j];
            }

            while (i < j && arr[i] < pivot) { // 从左向右找到第一个大于等于基准元素的元素
                i++;
            }
            if (i < j) { // 如果i < j,将该元素移到右边
                arr[j--] = arr[i];
            }
        }

        arr[i] = pivot; // 将基准元素放到正确的位置上

        quickSort(arr, left, i - 1); // 对左边的子数组进行快速排序
        quickSort(arr, i + 1, right); // 对右边的子数组进行快速排序
    }
}

在上面的代码中,我们使用了递归的方式来实现快速排序。在快速排序算法中,我们首先选择一个基准元素,将数组中小于基准元素的元素放在基准元素的左边,大于基准元素的元素放在基准元素的右边。然后,我们对左右两个子数组分别递归地进行快速排序,直到子数组的长度为1或0。

需要注意的是,在快速排序算法中,我们使用了两个指针i和j来遍历数组,i指向数组的左端,j指向数组的右端。在每一轮循环中,我们先从右向左找到第一个小于基准元素的元素,然后从左向右找到第一个大于等于基准元素的元素,将它们交换位置。最终,基准元素就被放到了正确的位置上。

填坑法是一种基于快速排序的优化算法,它的思路是:在快速排序中,我们需要将小于基准元素的元素放在基准元素的左边,大于基准元素的元素放在基准元素的右边,这样的话,每次交换都需要移动多个元素,效率较低。因此,我们可以将交换操作转化为填坑操作,即先将基准元素保存到一个临时变量中,然后将空出来的位置填上小于基准元素的元素,最后将基准元素填到空出来的位置上。这样,每次交换只需要移动一个元素,效率更高。

以下是快速排序(填坑法)的Java实现代码,同样加上了注释和讲解:

public class QuickSort {
    public static void main(String[] args) {
        int[] arr = {3, 1, 5, 2, 4, 9, 7, 6, 8}; // 定义一个包含9个元素的整型数组

        quickSort(arr, 0, arr.length - 1); // 调用快速排序算法对数组进行排序

        System.out.print("Sorted integers: "); // 输出排序后的整数
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " "); // 依次输出数组中的每个元素
        }
    }

    /**
     * 快速排序算法(填坑法)
     * @param arr 待排序的数组
     * @param left 数组的左边界
     * @param right 数组的右边界
     */
    public static void quickSort(int[] arr, int left, int right) {
        if (left >= right) { // 如果左边界大于等于右边界,直接返回
            return;
        }

        int i = left, j = right; // 定义两个指针i和j,分别指向数组的左右两端
        int pivot = arr[left]; // 选择第一个元素作为基准元素

        while (i < j) { // 循环执行以下操作,直到i >= j
            while (i < j && arr[j] >= pivot) { // 从右向左找到第一个小于基准元素的元素
                j--;
            }
            if (i < j) { // 如果i < j,将该元素填到左边的空位上
                arr[i] = arr[j];
                i++;
            }

            while (i < j && arr[i] < pivot) { // 从左向右找到第一个大于等于基准元素的元素
                i++;
            }
            if (i < j) { // 如果i < j,将该元素填到右边的空位上
                arr[j] = arr[i];
                j--;
            }
        }

        arr[i] = pivot; // 将基准元素填到正确的位置上

        quickSort(arr, left, i - 1); // 对左边的子数组进行快速排序
        quickSort(arr, i + 1, right); // 对右边的子数组进行快速排序
    }
}

在填坑法的实现中,我们使用了两个指针i和j来遍历数组,i指向数组的左端,j指向数组的右端。在每一轮循环中,我们先从右向左找到第一个小于基准元素的元素,然后将它填到左边的空位上;然后从左向右找到第一个大于等于基准元素的元素,将它填到右边的空位上。最终,基准元素就被填到了正确的位置上。

5.归并排序(Merge Sort)

归并排序是一种基于分治思想的排序算法。它的基本思想是将待排序的序列分成若干个子序列,分别进行排序,然后再将排好序的子序列合并成一个有序的序列。归并排序的主要过程可以分为两个步骤:

  1. 分割:将待排序的序列从中间分成两个子序列,再对子序列进行分割,直到每个子序列只有一个元素为止。

  2. 合并:将两个已经排好序的子序列合并成一个有序的序列,再将多个有序的子序列合并成一个完整的有序序列。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。它是一种稳定的排序算法,适用于各种数据类型的排序。但是,归并排序需要额外的空间来存储分割后的子序列,因此在排序大规模数据时,可能会出现空间不足的问题。

 

C语言实现:

#include <stdio.h>

void merge(int arr[], int l, int m, int r) {
    int i, j, k;
    int n1 = m - l + 1;
    int n2 = r - m;

    // 创建两个临时数组
    int L[n1], R[n2];

    // 将数据复制到临时数组中
    for (i = 0; i < n1; i++)
        L[i] = arr[l + i];
    for (j = 0; j < n2; j++)
        R[j] = arr[m + 1 + j];

    // 合并临时数组
    i = 0;
    j = 0;
    k = l;
    while (i < n1 && j < n2) {
        if (L[i] <= R[j]) {
            arr[k] = L[i];
            i++;
        } else {
            arr[k] = R[j];
            j++;
        }
        k++;
    }

    // 处理剩余元素
    while (i < n1) {
        arr[k] = L[i];
        i++;
        k++;
    }

    while (j < n2) {
        arr[k] = R[j];
        j++;
        k++;
    }
}

void mergeSort(int arr[], int l, int r) {
    if (l < r) {
        int m = l + (r - l) / 2;

        // 递归分解左右两部分
        mergeSort(arr, l, m);
        mergeSort(arr, m + 1, r);

        // 合并左右两部分
        merge(arr, l, m, r);
    }
}

int main() {
    int arr[] = { 38, 27, 43, 3, 9, 82, 10 };
    int n = sizeof(arr) / sizeof(arr[0]);

    mergeSort(arr, 0, n - 1);

    for (int i = 0; i < n; i++)
        printf("%d ", arr[i]);
    printf("\n");

    return 0;
}

Java实现:

public class MergeSort {
    public static void merge(int arr[], int l, int m, int r) {
        int i, j, k;
        int n1 = m - l + 1;
        int n2 = r - m;

        // 创建两个临时数组
        int L[] = new int[n1];
        int R[] = new int[n2];

        // 将数据复制到临时数组中
        for (i = 0; i < n1; i++)
            L[i] = arr[l + i];
        for (j = 0; j < n2; j++)
            R[j] = arr[m + 1 + j];

        // 合并临时数组
        i = 0;
        j = 0;
        k = l;
        while (i < n1 && j < n2) {
            if (L[i] <= R[j]) {
                arr[k] = L[i];
                i++;
            } else {
                arr[k] = R[j];
                j++;
            }
            k++;
        }

        // 处理剩余元素
        while (i < n1) {
            arr[k] = L[i];
            i++;
            k++;
        }

        while (j < n2) {
            arr[k] = R[j];
            j++;
            k++;
        }
    }

    public static void mergeSort(int arr[], int l, int r) {
        if (l < r) {
            int m = l + (r - l) / 2;

            // 递归分解左右两部分
            mergeSort(arr, l, m);
            mergeSort(arr, m + 1, r);

            // 合并左右两部分
            merge(arr, l, m, r);
        }
    }

    public static void main(String args[]) {
        int arr[] = { 38, 27, 43, 3, 9, 82, 10 };
        int n = arr.length;

        mergeSort(arr, 0, n - 1);

        for (int i = 0; i < n; i++)
            System.out.print(arr[i] + " ");
        System.out.println();
    }
}

6.堆排序(Heap Sort):

将数组看成一颗完全二叉树,将其转换为一个大根堆或小根堆,然后依次取出堆顶元素,将其放在已排序元素的末尾,直到所有元素有序。

堆排序(Heap Sort)是一种基于完全二叉树的排序算法,其基本思想是将待排序的数组看成一颗完全二叉树,然后将其转换为一个大根堆或小根堆。在大根堆中,每个父节点的值都大于等于其子节点的值;在小根堆中,每个父节点的值都小于等于其子节点的值。堆排序的基本步骤如下:

  1. 将待排序的数组转换为一个大根堆或小根堆。

  2. 取出堆顶元素,将其放在已排序元素的末尾。

  3. 调整剩余元素,使其仍然成为一个大根堆或小根堆。

  4. 重复步骤2和步骤3,直到所有元素有序。

具体实现过程如下:

  1. 将待排序的数组转换为一个大根堆或小根堆。

  2. 取出堆顶元素,将其放在已排序元素的末尾。

  3. 调整剩余元素,使其仍然成为一个大根堆或小根堆。

  4. 重复步骤2和步骤3,直到所有元素有序。

堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。由于堆排序需要进行大量的数据移动,因此其常数项比较大,不适合处理小规模的数据。

C语言实现:

#include <stdio.h>

void swap(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
}

void heapify(int arr[], int n, int i) {
    int largest = i;
    int l = 2 * i + 1;
    int r = 2 * i + 2;

    if (l < n && arr[l] > arr[largest])
        largest = l;

    if (r < n && arr[r] > arr[largest])
        largest = r;

    if (largest != i) {
        swap(&arr[i], &arr[largest]);
        heapify(arr, n, largest);
    }
}

void heapSort(int arr[], int n) {
    for (int i = n / 2 - 1; i >= 0; i--)
        heapify(arr, n, i);

    for (int i = n - 1; i >= 0; i--) {
        swap(&arr[0], &arr[i]);
        heapify(arr, i, 0);
    }
}

int main() {
    int arr[] = { 38, 27, 43, 3, 9, 82, 10 };
    int n = sizeof(arr) / sizeof(arr[0]);

    heapSort(arr, n);

    for (int i = 0; i < n; i++)
        printf("%d ", arr[i]);
    printf("\n");

    return 0;
}

Java实现:

public class HeapSort {
    public static void swap(int arr[], int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    public static void heapify(int arr[], int n, int i) {
        int largest = i;
        int l = 2 * i + 1;
        int r = 2 * i + 2;

        if (l < n && arr[l] > arr[largest])
            largest = l;

        if (r < n && arr[r] > arr[largest])
            largest = r;

        if (largest != i) {
            swap(arr, i, largest);
            heapify(arr, n, largest);
        }
    }

    public static void heapSort(int arr[], int n) {
        for (int i = n / 2 - 1; i >= 0; i--)
            heapify(arr, n, i);

        for (int i = n - 1; i >= 0; i--) {
            swap(arr, 0, i);
            heapify(arr, i, 0);
        }
    }

    public static void main(String args[]) {
        int arr[] = { 38, 27, 43, 3, 9, 82, 10 };
        int n = arr.length;

        heapSort(arr, n);

        for (int i = 0; i < n; i++)
            System.out.print(arr[i] + " ");
        System.out.println();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ヾ草木萤火(≧▽≦*)o

希望大家多多支持,我会继续分享

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值