自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 卷积神经网络设计指南:从理论到实践的经验总结

本文系统性地探讨了卷积神经网络(CNN)的设计原则,重点分析了卷积核选择、网络深度、特征通道与全连接层设计等关键问题。文章指出,奇数尺寸的方形卷积核(如3×3)因中心对齐和参数效率优势成为主流,而堆叠小卷积核可替代大核以增强非线性表达能力。网络深度方面,尽管残差连接等技术解决了梯度问题,但边际效应限制了无限加深的收益。特征图通道数通常随空间降采样倍增以平衡信息量,而全局平均池化(GAP)的引入显著优化了全连接层的参数量与过拟合风险。作者强调,CNN设计仍高度依赖经验性调参,缺乏理论指导,需通过实验验证最佳配

2025-06-09 17:31:45 852

原创 因子分析基础指南:原理、步骤与地球化学数据分析应用解析

因子分析(Factor Analysis,简称FA)是一种统计方法,主要用于降维和探索变量之间的潜在结构。它通过识别一组可观测变量背后可能存在的、不可直接观测的潜在变量(latent variables)或因子(factors),来解释这些变量之间的相关性。其基本思路是:试图找出少数几个公共因子,这些因子能够解释原始变量之间的相关关系。

2025-05-12 16:39:44 1294

原创 这可能是你正在找的 Sklearn 机器学习监督分类算法最全实战笔记

终于到了激动人心的地方了,这部分将会说明如何使用sklearn库相关函数来调用并实现相关机器学习模型的训练和预测。对于不懂代码的小伙伴来说,在一般情况下也可以复制并在相关数据集上套用,并对相关参数我会进行说明。的sklearn机器学习。在参考和使用本篇代码请确保你已经下载安装并配置好 Python 相关环境(如果没有,请参考)和如下举例的包。关于本篇的说明:使用的 Python 版本为3.10.9(理论上你只要是v3.0以上就可以)另外请注意,

2025-05-09 20:34:48 1464

原创 新手必看:Python、PyCharm与深度学习框架安装指南(含CUDA与PyTorch)

本文为新手提供了详细的机器学习环境搭建指南,主要包括Python的安装、PyCharm的安装与使用、Python包的安装方法(包括可视化安装和命令行安装)、以及深度学习框架(如PyTorch和TensorFlow)的安装步骤。文章还特别强调了CUDA的安装与配置,这是进行深度学习的基础。通过本文的指导,新手可以顺利搭建起机器学习的基础环境,为后续的学习和实践打下坚实的基础。

2025-05-08 21:32:54 1119

原创 提升成矿预测模型的关键:深度学习数据增强技术指南

数据增强,有的人叫他数据扩增或者数据扩充,他们表达的都是一个意思。指的是一种通过人工生成或变换现有数据来扩大训练数据集规模和质量的技术。

2025-05-07 21:37:13 1342

原创 科研绘图神器推荐:轻松画出专业神经网络结构图

科研绘图是所有研究入门的第一课之一,好的绘图会让你的论文更吸引眼球,尽管绘图方面生物信息方向的的绘图很酷炫,快成了美术专业大比拼了。我常常调侃道:作为“研究型人才”,活生生让论文给变成了一个艺术家(😂)。本文将会缩短你的试错时间,快速让你有目标的去学习和选择科研绘图软件。这将会是科研入门的众多文章中的一个方面,内容很多,本文主要涉及软件推荐。

2025-05-06 20:35:40 1147

原创 深入解析t-SNE:原理、算法与应用

计算高维空间的相似度及概率矩阵首先,t-SNE 通过计算高维空间中每对数据点之间的相似度,构建了一个相似度矩阵。通常使用高斯核函数来计算这些相似度,并通过“困惑度”参数调整相似度的宽度。然后,将这个相似度矩阵转化为条件概率 pj∣i​,这些概率反映了高维空间中点之间的相似性。经过对称化处理后,得到高维空间的相似度概率矩阵 P。

2025-04-06 22:24:20 1228

原创 ArcGIS地统计分析工具无法使用?一招教你激活Geostatistical Analyst

**概况(120字):** 在ArcGIS 10x中使用克里金插值时,地统计分析工具(Geostatistical Analyst)可能显示灰色不可用。解决方法:通过【自定义】→【工具条】调出地统计工具条,再在【扩展模块】中勾选启用该功能即可。此问题通常由未激活扩展模块导致,类似工具不可用时均可通过此方式解决。建议后续使用ArcGIS Pro以获得更好兼容性。关注作者获取更多实用教程!

2025-03-28 11:23:32 387

原创 蒙特卡洛与马尔可夫链:从随机采样到复杂问题求解

蒙特卡洛方法是一种强大的数值计算工具,通过随机采样和统计分析来解决复杂的数学和物理问题。其核心思想是通过大量随机样本来估算问题的解,尤其适用于高维问题和具有不确定性的系统。优缺点优点:简单易实现,适用于高维问题,通用性强。缺点:收敛速度慢,存在随机误差,不适合所有问题。你可以把蒙特卡洛看成 “随机化的穷举法”总结来说,马尔科夫蒙特卡洛是对于目标状态我们没有办法直接采样,所以我们才用马尔可夫链来一直运行使用蒙特卡洛来采用实现完成随机采样,在这个过程中,对每次采样进行判断是否采用采样。无法直接采样。

2025-03-28 09:20:27 1089

原创 UMAP:非线性降维的核心原理与实践指南

使用 k-NN 获得点的关系结构UMAP 首先通过 k-最近邻(k-NN)算法构建高维数据点之间的图结构。这一步的目的是捕捉数据在高维空间中的局部邻域关系,即哪些点彼此接近。优化点的关系权重构建好 k-NN 图后,UMAP 会为图中的边赋予权重,反映数据点之间的相似性。这是通过考虑数据点在高维空间中的距离,并使用一种非线性变换(如基于距离的概率分布)来计算边的权重。这一步是为了更精确地描述点与点之间的相似性关系。随机初始化低维的点在低维空间中随机初始化数据点的位置。

2025-03-25 09:09:22 1378

原创 主成分分析(PCA)详解:从原理到应用与可视化

PCA,全称,中文称为,是一种常用的技术。它的主要目的是通过线性变换,将原始数据转换到一个新的坐标系中,,从而实现数据降维、去噪或可视化。

2025-03-24 16:40:40 2935

原创 地球化学数据的偏态分布:现象、影响与处理方法

这部分内容相对较短,我一开始在考虑要不把地球化学数据的偏态分布和闭合效应放在一起讲述,后来考虑到篇幅问题,遂决定分开写,这部分内容相对简单,中心思想就一个:地球化学数据大部分情况下存在偏态分布或者厚尾分布。在地球化学研究中,通过对岩石、土壤或沉积物等样品中的相关元素或同位素进行测量,并对结果进行分析,是一个至关重要的环节。在分析这些测量数据时,数学上的统计分析方法被广泛应用。然而,许多统计分析方法都建立在数据服从正态分布的假设基础上。在地球化学研究中,一个基础但至关重要的问题是:地球化学数据是否符合正态分布

2025-03-23 22:19:46 903

原创 成分数据的闭合效应对地球化学数据的影响及其解决方案

封闭效应 (Closure Effect),也称为常数和效应 (Constant Sum Effect),是地球化学数据分析中一个需要特别注意的统计现象。它的产生是由于我们通常使用成分数据 (Compositional Data)百分比 (%)百万分率 (ppm)由于这些数据表示的是各组分占总体的比例,它们的总和必然是一个常数 (例如 100% 或 1,000,000 ppm)。这意味着每个元素的含量不是独立的,而是与其他元素的含量相互制约。改变其中一个元素的含量必然会影响其他元素的相对比例。

2025-03-20 09:51:45 879 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除