C10-2024.12.21

1、安装最新版phpstudy集成工具并创建一个网站,编写php代码输出网站信息(phpinfo)

首先下载小皮后打开网站,创建一个域名为homework.com的网站,选好php版本

打开vscode,在创建好的网站目录下创建一个info.php的文件,输入phpinfo()

打开浏览器,访问该目录,可以得到php的信息

注意在小皮设置的端口信息,默认为80端口
2、安装vscode,并安装php开发插件、汉化插件、xdebug等插件

通过搜索栏直接搜索插件名称,下载后点击插件的设置按钮,可以对插件进行设置

通过命令面板搜索language,可对语言进行设置
3、配置phpstudy集成工具xdebug扩展,并使用vscode对php代码进行调试。

在文件上传校验处下一断点,通过对文件上传,当停到断点处时,可以看到参数发生了变化


4、编写php代码实现文件上传功能

创建一个目录,在目录下新建任意文件,写好上传的代码,注意上传的php文件位置要和另一个接受的文件名称保持一致

代码如下

<html>
    <head>
        <meta charset="utf-8">
        <title>上传</title>
    </head>
    <body>
        <form action="upload-file.php" method="post" enctype="multipart/form-data">
            <label for="文件名"></label>
            <input type="file" name="file" id="file">
            <input type="submit" name="submit" value="提交">
        </form>
    </body>
</html>

编写接收的文件upload-file.php,通过函数explode将文件分为名称和后缀,利用end函数拿到后缀,再通过创建的后缀组对后缀进行过滤,最后进行比对,已经限制文件大小,从而对文件上传进行过滤

代码如下

<?php
$_allowebExit=array("gif","txt","jpeg","jpg","peg");
$temp=explode(".", $_FILES["file"]["name"]);
$extension=end($temp);
if((($_FILES["file"]["type"]=="image/gif")||
    ($_FILES["file"]["type"]=="image/jpeg")||
    ($_FILES["file"]["type"]== "image/jdg")||
    ($_FILES["file"]["type"]== "text/plain")||
    ($_FILES["file"]["type"]== "image/pjpeg")||
    ($_FILES["file"]["type"]== "image/x-png")||
    ($_FILES["file"]["type"]== "image/png"))
    &&($_FILES["file"]["size"]<204800)
    && in_array($extension,$allowedExts))
  {
if($_FILES["file"]["error"]>0)
{
    echo"错误" .$_FILES["file"]["error"]."<br>";
}
else
{
    echo"上传文件名:". $_FILES["file"]["name"]."<br>";
    echo"文件类型:". $_FILES["file"]["type"]."<br>";
    echo "文件大小:". ($_FILES["file"]["size"]/1024)."<br>";
    echo "文件临时储存位置:". $_FILES["file"]["tmp_name"]. "<br>"; 
}
  }
else
{
    echo "非法";
}
?>

此外,上传到临时目录["tmp_name"],也可以选择保存到某一文件夹下面,通过move函数对上传的文件进行保存

代码如下

<?php
$allowedExts = array("gif", "txt", "jpeg", "jpg", "peg");
$temp = explode(".", $_FILES["file"]["name"]);
$extension = end($temp);
if (
    (
        ($_FILES["file"]["type"] == "image/gif") ||
        ($_FILES["file"]["type"] == "image/jpeg") ||
        ($_FILES["file"]["type"] == "image/jpg") ||
        ($_FILES["file"]["type"] == "text/plain") ||
        ($_FILES["file"]["type"] == "image/pjpeg") ||
        ($_FILES["file"]["type"] == "image/x-png") ||
        ($_FILES["file"]["type"] == "image/png")
    ) &&
    ($_FILES["file"]["size"] < 204800) &&
    in_array($extension, $allowedExts)
) {
    if ($_FILES["file"]["error"] > 0) {
        echo "错误" . $_FILES["file"]["error"] . "<br>";
    } else {
        echo "上传文件名: " . $_FILES["file"]["name"] . "<br>";
        echo "文件类型: " . $_FILES["file"]["type"] . "<br>";
        echo "文件大小: " . ($_FILES["file"]["size"] / 1024) . "<br>";
        echo "文件临时储存位置: " . $_FILES["file"]["tmp_name"] . "<br>";

        if (file_exists("upload/" . $_FILES["file"]["name"])) {
            echo $_FILES["file"]["name"] . "文件已经存在";
        } else {
            move_uploaded_file($_FILES["file"]["tmp_name"], "upload/" . $_FILES["file"]["name"]);
            echo "文件位置: " . "upload/" . $_FILES["file"]["name"];
        }
    }
} else {
    echo "非法";
}
?>

5、请概述cookie和session的区别和联系

答:cookie为网站验证用户的值,而session能让cookie值在特定的情况下一直携带并且不改变,并且储存在某个目录下,实现了用户在访问同一网站的不同目录时,能将储存的cookie值直接用于识别身份

C:\Users\wangs>nvidia-smi Sun Nov 23 18:46:42 2025 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 556.19 Driver Version: 556.19 CUDA Version: 12.5 |这是我的电脑,在anaconda中操作, (base) C:\Users\wangs>conda activate Resnet (Resnet) C:\Users\wangs>conda install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 usage: conda-script.py [-h] [-v] [--no-plugins] [-V] COMMAND ... conda-script.py: error: unrecognized arguments: --index-url https://download.pytorch.org/whl/cu121 (Resnet) C:\Users\wangs>pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 Looking in indexes: https://download.pytorch.org/whl/cu121 Collecting torch Using cached https://download.pytorch.org/whl/cu121/torch-2.5.1%2Bcu121-cp39-cp39-win_amd64.whl (2449.3 MB) Collecting torchvision Using cached https://download.pytorch.org/whl/cu121/torchvision-0.20.1%2Bcu121-cp39-cp39-win_amd64.whl (6.1 MB) Collecting torchaudio Using cached https://download.pytorch.org/whl/cu121/torchaudio-2.5.1%2Bcu121-cp39-cp39-win_amd64.whl (4.1 MB) Collecting filelock (from torch) Downloading https://download.pytorch.org/whl/filelock-3.19.1-py3-none-any.whl.metadata (2.1 kB) Requirement already satisfied: typing-extensions>=4.8.0 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from torch) (4.14.1) Collecting networkx (from torch) Downloading https://download.pytorch.org/whl/networkx-3.5-py3-none-any.whl.metadata (6.3 kB) Requirement already satisfied: jinja2 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from torch) (3.1.6) Collecting fsspec (from torch) Downloading https://download.pytorch.org/whl/fsspec-2025.9.0-py3-none-any.whl.metadata (10 kB) Collecting sympy==1.13.1 (from torch) Using cached https://download.pytorch.org/whl/sympy-1.13.1-py3-none-any.whl (6.2 MB) Collecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch) Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 1.8 MB/s 0:00:00 Requirement already satisfied: numpy in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from torchvision) (2.0.2) Collecting pillow!=8.3.*,>=5.3.0 (from torchvision) Downloading https://download.pytorch.org/whl/pillow-11.3.0-cp39-cp39-win_amd64.whl.metadata (9.2 kB) Requirement already satisfied: MarkupSafe>=2.0 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from jinja2->torch) (3.0.2) INFO: pip is looking at multiple versions of networkx to determine which version is compatible with other requirements. This could take a while. Collecting networkx (from torch) Downloading https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl.metadata (5.2 kB) Downloading https://download.pytorch.org/whl/pillow-11.3.0-cp39-cp39-win_amd64.whl (7.0 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.0/7.0 MB 2.9 MB/s 0:00:02 Downloading https://download.pytorch.org/whl/filelock-3.19.1-py3-none-any.whl (15 kB) Downloading https://download.pytorch.org/whl/fsspec-2025.9.0-py3-none-any.whl (199 kB) Downloading https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl (1.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 2.3 MB/s 0:00:00 Installing collected packages: mpmath, sympy, pillow, networkx, fsspec, filelock, torch, torchvision, torchaudio Successfully installed filelock-3.19.1 fsspec-2025.9.0 mpmath-1.3.0 networkx-3.2.1 pillow-11.3.0 sympy-1.13.1 torch-2.5.1+cu121 torchaudio-2.5.1+cu121 torchvision-0.20.1+cu121 (Resnet) C:\Users\wangs>conda install monai Channels: - conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - defaults Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done ## Package Plan ## environment location: C:\Users\wangs\anaconda3\envs\Resnet added / updated specs: - monai The following packages will be downloaded: package | build ---------------------------|----------------- _openmp_mutex-4.5 | 2_gnu 48 KB conda-forge cuda-cudart-12.9.79 | he0c23c2_0 167 KB conda-forge cuda-cudart_win-64-12.9.79 | he0c23c2_0 23 KB conda-forge cuda-cupti-12.9.79 | hac47afa_1 3.8 MB conda-forge cuda-nvrtc-12.9.86 | hac47afa_1 55.8 MB conda-forge cuda-version-12.9 | h4f385c5_3 21 KB conda-forge cudnn-9.10.2.21 | h32ff316_0 19 KB conda-forge filelock-3.19.1 | pyhd8ed1ab_0 18 KB conda-forge fsspec-2025.7.0 | pyhd8ed1ab_0 142 KB conda-forge intel-openmp-2024.2.1 | h57928b3_1083 1.8 MB conda-forge libblas-3.9.0 | 35_h5709861_mkl 64 KB conda-forge libcblas-3.9.0 | 35_h2a3cdd5_mkl 65 KB conda-forge libcublas-12.9.1.4 | hac47afa_1 439.8 MB conda-forge libcudnn-9.10.2.21 | hca898b4_0 486.1 MB conda-forge libcudnn-dev-9.10.2.21 | hca898b4_0 153 KB conda-forge libcudss-0.6.0.5 | hca898b4_0 33.7 MB conda-forge libcufft-11.4.1.4 | hac47afa_1 154.7 MB conda-forge libcurand-10.3.10.19 | hac47afa_1 46.8 MB conda-forge libcusolver-11.7.5.82 | hac47afa_2 189.0 MB conda-forge libcusparse-12.5.10.65 | hac47afa_2 196.9 MB conda-forge liblapack-3.9.0 | 35_hf9ab0e9_mkl 77 KB conda-forge libmagma-2.9.0 | hb6a17ea_3 441.8 MB conda-forge libnvjitlink-12.9.86 | hac47afa_2 26.1 MB conda-forge libtorch-2.7.1 |cuda128_mkl_h2cc4d28_304 517.5 MB conda-forge libuv-1.51.0 | hfd05255_1 290 KB conda-forge llvm-openmp-20.1.8 | h29ce207_0 329 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/man mkl-2024.2.2 | h57928b3_16 98.3 MB conda-forge monai-1.5.1 | pyhd8ed1ab_0 1.2 MB conda-forge mpmath-1.3.0 | pyhd8ed1ab_1 429 KB conda-forge networkx-3.2.1 | pyhd8ed1ab_0 1.1 MB conda-forge optree-0.17.0 | py39h9da4e41_0 326 KB conda-forge pybind11-3.0.1 | pyh7a1b43c_0 227 KB conda-forge pybind11-global-3.0.1 | pyh5e4992e_0 222 KB conda-forge pytorch-2.7.1 |cuda128_mkl_py39_hf237e59_304 22.6 MB conda-forge sleef-3.9.0 | h67fd636_0 2.2 MB conda-forge sympy-1.14.0 | pyh04b8f61_5 4.4 MB conda-forge tbb-2021.13.0 | hd094cb3_4 146 KB conda-forge ------------------------------------------------------------ Total: 2.66 GB The following NEW packages will be INSTALLED: _openmp_mutex conda-forge/win-64::_openmp_mutex-4.5-2_gnu cuda-cudart conda-forge/win-64::cuda-cudart-12.9.79-he0c23c2_0 cuda-cudart_win-64 conda-forge/noarch::cuda-cudart_win-64-12.9.79-he0c23c2_0 cuda-cupti conda-forge/win-64::cuda-cupti-12.9.79-hac47afa_1 cuda-nvrtc conda-forge/win-64::cuda-nvrtc-12.9.86-hac47afa_1 cuda-version conda-forge/noarch::cuda-version-12.9-h4f385c5_3 cudnn conda-forge/win-64::cudnn-9.10.2.21-h32ff316_0 filelock conda-forge/noarch::filelock-3.19.1-pyhd8ed1ab_0 fsspec conda-forge/noarch::fsspec-2025.7.0-pyhd8ed1ab_0 intel-openmp conda-forge/win-64::intel-openmp-2024.2.1-h57928b3_1083 libabseil conda-forge/win-64::libabseil-20250512.1-cxx17_habfad5f_0 libcublas conda-forge/win-64::libcublas-12.9.1.4-hac47afa_1 libcudnn conda-forge/win-64::libcudnn-9.10.2.21-hca898b4_0 libcudnn-dev conda-forge/win-64::libcudnn-dev-9.10.2.21-hca898b4_0 libcudss conda-forge/win-64::libcudss-0.6.0.5-hca898b4_0 libcufft conda-forge/win-64::libcufft-11.4.1.4-hac47afa_1 libcurand conda-forge/win-64::libcurand-10.3.10.19-hac47afa_1 libcusolver conda-forge/win-64::libcusolver-11.7.5.82-hac47afa_2 libcusparse conda-forge/win-64::libcusparse-12.5.10.65-hac47afa_2 libgomp conda-forge/win-64::libgomp-15.2.0-h1383e82_7 libmagma conda-forge/win-64::libmagma-2.9.0-hb6a17ea_3 libnvjitlink conda-forge/win-64::libnvjitlink-12.9.86-hac47afa_2 libprotobuf conda-forge/win-64::libprotobuf-6.31.1-hdcda5b4_2 libtorch conda-forge/win-64::libtorch-2.7.1-cuda128_mkl_h2cc4d28_304 libuv conda-forge/win-64::libuv-1.51.0-hfd05255_1 monai conda-forge/noarch::monai-1.5.1-pyhd8ed1ab_0 mpmath conda-forge/noarch::mpmath-1.3.0-pyhd8ed1ab_1 networkx conda-forge/noarch::networkx-3.2.1-pyhd8ed1ab_0 optree conda-forge/win-64::optree-0.17.0-py39h9da4e41_0 pybind11 conda-forge/noarch::pybind11-3.0.1-pyh7a1b43c_0 pybind11-global conda-forge/noarch::pybind11-global-3.0.1-pyh5e4992e_0 pytorch conda-forge/win-64::pytorch-2.7.1-cuda128_mkl_py39_hf237e59_304 sleef conda-forge/win-64::sleef-3.9.0-h67fd636_0 sympy conda-forge/noarch::sympy-1.14.0-pyh04b8f61_5 The following packages will be SUPERSEDED by a higher-priority channel: llvm-openmp conda-forge::llvm-openmp-21.1.6-h4fa8~ --> anaconda/pkgs/main::llvm-openmp-20.1.8-h29ce207_0 The following packages will be DOWNGRADED: libblas 3.11.0-2_hf2e6a31_mkl --> 3.9.0-35_h5709861_mkl libcblas 3.11.0-2_h2a3cdd5_mkl --> 3.9.0-35_h2a3cdd5_mkl liblapack 3.11.0-2_hf9ab0e9_mkl --> 3.9.0-35_hf9ab0e9_mkl mkl 2025.3.0-hac47afa_454 --> 2024.2.2-h57928b3_16 tbb 2022.3.0-hd094cb3_1 --> 2021.13.0-hd094cb3_4 Proceed ([y]/n)? y done (Resnet) C:\Users\wangs>conda install pandas numpy scikit-learn -y Channels: - conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro done (Resnet) C:\Users\wangs>pip install tensorboard Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting tensorboard Using cached https://pypi.tuna.tsinghua.edu.cn/packages/9c/d9/a5db55f88f258ac669a92858b70a714bbbd5acd993820b41ec4a96a4d77f/tensorboard-2.20.0-py3-none-any.whl (5.5 MB) Collecting absl-py>=0.4 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/8f/aa/ba0014cc4659328dc818a28827be78e6d97312ab0cb98105a770924dc11e/absl_py-2.3.1-py3-none-any.whl (135 kB) Collecting grpcio>=1.48.2 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/de/d1/fb90564a981eedd3cd87dc6bfd7c249e8a515cfad1ed8e9af73be223cd3b/grpcio-1.76.0-cp39-cp39-win_amd64.whl (4.7 MB) Collecting markdown>=2.6.8 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/70/ae/44c4a6a4cbb496d93c6257954260fe3a6e91b7bed2240e5dad2a717f5111/markdown-3.9-py3-none-any.whl (107 kB) Requirement already satisfied: numpy>=1.12.0 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from tensorboard) (2.0.2) Requirement already satisfied: packaging in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from tensorboard) (25.0) Requirement already satisfied: pillow in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from tensorboard) (11.3.0) Collecting protobuf!=4.24.0,>=3.19.6 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a2/0f/77b5a12825d59af2596634f062eb1a472f44494965a05dcd97cb5daf3ae5/protobuf-6.33.1-cp39-cp39-win_amd64.whl (436 kB) Requirement already satisfied: setuptools>=41.0.0 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from tensorboard) (80.9.0) Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB) Collecting werkzeug>=1.0.1 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/52/24/ab44c871b0f07f491e5d2ad12c9bd7358e527510618cb1b803a88e986db1/werkzeug-3.1.3-py3-none-any.whl (224 kB) Requirement already satisfied: typing-extensions~=4.12 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from grpcio>=1.48.2->tensorboard) (4.14.1) Requirement already satisfied: importlib-metadata>=4.4 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from markdown>=2.6.8->tensorboard) (8.7.0) Requirement already satisfied: zipp>=3.20 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard) (3.23.0) Requirement already satisfied: MarkupSafe>=2.1.1 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from werkzeug>=1.0.1->tensorboard) (3.0.2) Installing collected packages: werkzeug, tensorboard-data-server, protobuf, grpcio, absl-py, markdown, tensorboard Successfully installed absl-py-2.3.1 grpcio-1.76.0 markdown-3.9 protobuf-6.33.1 tensorboard-2.20.0 tensorboard-data-server-0.7.2 werkzeug-3.1.3 (Resnet) C:\Users\wangs>pip install nibabel Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting nibabel Downloading https://pypi.tuna.tsinghua.edu.cn/packages/43/b2/dc384197be44e2a640bb43311850e23c2c30f3b82ce7c8cdabbf0e53045e/nibabel-5.3.2-py3-none-any.whl (3.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.3/3.3 MB 10.2 MB/s 0:00:00 Collecting importlib-resources>=5.12 (from nibabel) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl (37 kB) Requirement already satisfied: numpy>=1.22 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from nibabel) (2.0.2) Requirement already satisfied: packaging>=20 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from nibabel) (25.0) Requirement already satisfied: typing-extensions>=4.6 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from nibabel) (4.14.1) Requirement already satisfied: zipp>=3.1.0 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from importlib-resources>=5.12->nibabel) (3.23.0) Installing collected packages: importlib-resources, nibabel Successfully installed importlib-resources-6.5.2 nibabel-5.3.2 (Resnet) C:\Users\wangs>pip install chardet Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting chardet Using cached https://pypi.tuna.tsinghua.edu.cn/packages/38/6f/f5fbc992a329ee4e0f288c1fe0e2ad9485ed064cac731ed2fe47dcc38cbf/chardet-5.2.0-py3-none-any.whl (199 kB) Installing collected packages: chardet Successfully installed chardet-5.2.0 (Resnet) C:\Users\wangs>conda install tqdm -y Channels: done (Resnet) C:\Users\wangs>python -c "import torch; print('PyTorch:', torch.__version__); print('CUDA可用:', torch.cuda.is_available())" Traceback (most recent call last): File "<string>", line 1, in <module> File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\__init__.py", line 2126, in <module> from torch import _VF as _VF, functional as functional # usort: skip File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\functional.py", line 8, in <module> import torch.nn.functional as F File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\nn\__init__.py", line 8, in <module> from torch.nn.modules import * # usort: skip # noqa: F403 File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\nn\modules\__init__.py", line 1, in <module> from .module import Module # usort: skip File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\nn\modules\module.py", line 17, in <module> from torch.utils._python_dispatch import is_traceable_wrapper_subclass File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\utils\__init__.py", line 8, in <module> from torch.utils import ( File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\utils\data\__init__.py", line 1, in <module> from torch.utils.data.dataloader import ( File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\utils\data\dataloader.py", line 21, in <module> import torch.distributed as dist File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\distributed\__init__.py", line 122, in <module> from .device_mesh import DeviceMesh, init_device_mesh File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\distributed\device_mesh.py", line 40, in <module> from torch.distributed.distributed_c10d import ( File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\distributed\distributed_c10d.py", line 236, in <module> class Backend(str): # noqa: SLOT000 File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\distributed\distributed_c10d.py", line 287, in Backend XCCL: ProcessGroup.BackendType.XCCL, AttributeError: type object 'torch._C._distributed_c10d.BackendType' has no attribute 'XCCL' (Resnet) C:\Users\wangs>pip uninstall torch torchvision torchaudio -y Found existing installation: torch 2.5.1+cu121 Uninstalling torch-2.5.1+cu121: Successfully uninstalled torch-2.5.1+cu121 WARNING: Failed to remove contents in a temporary directory 'C:\Users\wangs\anaconda3\envs\Resnet\Lib\site-packages\torch\~ib'. You can safely remove it manually. Found existing installation: torchvision 0.20.1+cu121 Uninstalling torchvision-0.20.1+cu121: Successfully uninstalled torchvision-0.20.1+cu121 Found existing installation: torchaudio 2.5.1+cu121 Uninstalling torchaudio-2.5.1+cu121: Successfully uninstalled torchaudio-2.5.1+cu121 (Resnet) C:\Users\wangs>conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia Channels: - pytorch - nvidia - conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - defaults Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done ## Package Plan ## environment location: C:\Users\wangs\anaconda3\envs\Resnet added / updated specs: - pytorch - pytorch-cuda=11.8 - torchaudio - torchvision The following packages will be downloaded: package | build ---------------------------|----------------- cuda-cccl-12.9.27 | 0 16 KB nvidia cuda-cccl_win-64-12.9.27 | 0 1.1 MB nvidia cuda-cudart-11.8.89 | 0 1.4 MB nvidia cuda-cudart-dev-11.8.89 | 0 723 KB nvidia cuda-cupti-11.8.87 | 0 11.5 MB nvidia cuda-libraries-11.8.0 | 0 1 KB nvidia cuda-libraries-dev-11.8.0 | 0 1 KB nvidia cuda-nvrtc-11.8.89 | 0 72.1 MB nvidia cuda-nvrtc-dev-11.8.89 | 0 16.1 MB nvidia cuda-nvtx-11.8.86 | 0 43 KB nvidia cuda-profiler-api-12.9.79 | 0 19 KB nvidia cuda-runtime-11.8.0 | 0 1 KB nvidia imath-3.1.12 | hbb528cf_0 157 KB conda-forge libabseil-20250127.1 | cxx17_h4eb7d71_0 1.8 MB conda-forge libcublas-11.11.3.6 | 0 33 KB nvidia libcublas-dev-11.11.3.6 | 0 375.9 MB nvidia libcufft-10.9.0.58 | 0 6 KB nvidia libcufft-dev-10.9.0.58 | 0 144.6 MB nvidia libcurand-dev-10.3.5.147 | 0 49.7 MB nvidia libcusolver-11.4.1.48 | 0 29 KB nvidia libcusolver-dev-11.4.1.48 | 0 94.1 MB nvidia libcusparse-11.7.5.86 | 0 13 KB nvidia libcusparse-dev-11.7.5.86 | 0 175.7 MB nvidia libnpp-11.8.0.86 | 0 294 KB nvidia libnpp-dev-11.8.0.86 | 0 143.2 MB nvidia libnvjpeg-11.9.0.86 | 0 4 KB nvidia libnvjpeg-dev-11.9.0.86 | 0 1.9 MB nvidia libopencv-4.12.0 |qt6_py39h45bf879_600 32.6 MB conda-forge libopenvino-2025.0.0 | hb1d9b14_3 3.3 MB conda-forge libopenvino-auto-batch-plugin-2025.0.0| h04f32e0_3 99 KB conda-forge libopenvino-auto-plugin-2025.0.0| h04f32e0_3 189 KB conda-forge libopenvino-hetero-plugin-2025.0.0| hb61b842_3 157 KB conda-forge libopenvino-intel-cpu-plugin-2025.0.0| hb1d9b14_3 8.3 MB conda-forge libopenvino-intel-gpu-plugin-2025.0.0| hb1d9b14_3 7.7 MB conda-forge libopenvino-ir-frontend-2025.0.0| hb61b842_3 156 KB conda-forge libopenvino-onnx-frontend-2025.0.0| hf9c6bd6_3 1013 KB conda-forge libopenvino-paddle-frontend-2025.0.0| hf9c6bd6_3 418 KB conda-forge libopenvino-pytorch-frontend-2025.0.0| he0c23c2_3 677 KB conda-forge libopenvino-tensorflow-frontend-2025.0.0| hd51e7bd_3 864 KB conda-forge libopenvino-tensorflow-lite-frontend-2025.0.0| he0c23c2_3 329 KB conda-forge libprotobuf-5.29.3 | hd33f5f0_2 6.7 MB conda-forge libtorch-2.5.1 |cpu_mkl_hf54a72f_117 31.6 MB conda-forge opencv-4.12.0 |qt6_py39hb5cec6c_600 27 KB conda-forge openexr-3.3.5 | h4750f91_0 1.0 MB conda-forge pthread-stubs-0.4 | h0e40799_1002 9 KB conda-forge py-opencv-4.12.0 |qt6_py39h54bbc76_600 1.1 MB conda-forge pytorch-2.5.1 |cpu_mkl_py39_hab059a2_117 20.8 MB conda-forge pytorch-cuda-11.8 | h24eeafa_6 7 KB pytorch pytorch-mutex-1.0 | cuda 3 KB pytorch setuptools-75.8.2 | pyhff2d567_0 760 KB conda-forge torchaudio-2.5.1 | py39_cu118 7.1 MB pytorch torchvision-0.20.1 | py39_cu118 7.7 MB pytorch ------------------------------------------------------------ Total: 1.19 GB The following NEW packages will be INSTALLED: cuda-cccl nvidia/win-64::cuda-cccl-12.9.27-0 cuda-cccl_win-64 nvidia/win-64::cuda-cccl_win-64-12.9.27-0 cuda-cudart-dev nvidia/win-64::cuda-cudart-dev-11.8.89-0 cuda-libraries nvidia/win-64::cuda-libraries-11.8.0-0 cuda-libraries-dev nvidia/win-64::cuda-libraries-dev-11.8.0-0 cuda-nvrtc-dev nvidia/win-64::cuda-nvrtc-dev-11.8.89-0 cuda-nvtx nvidia/win-64::cuda-nvtx-11.8.86-0 cuda-profiler-api nvidia/win-64::cuda-profiler-api-12.9.79-0 cuda-runtime nvidia/win-64::cuda-runtime-11.8.0-0 lcms2 conda-forge/win-64::lcms2-2.17-hbcf6048_0 libcublas-dev nvidia/win-64::libcublas-dev-11.11.3.6-0 libcufft-dev nvidia/win-64::libcufft-dev-10.9.0.58-0 libcurand-dev nvidia/win-64::libcurand-dev-10.3.5.147-0 libcusolver-dev nvidia/win-64::libcusolver-dev-11.4.1.48-0 libcusparse-dev nvidia/win-64::libcusparse-dev-11.7.5.86-0 libgcc conda-forge/win-64::libgcc-15.2.0-h1383e82_7 libnpp nvidia/win-64::libnpp-11.8.0.86-0 libnpp-dev nvidia/win-64::libnpp-dev-11.8.0.86-0 libnvjpeg nvidia/win-64::libnvjpeg-11.9.0.86-0 libnvjpeg-dev nvidia/win-64::libnvjpeg-dev-11.9.0.86-0 libwebp conda-forge/win-64::libwebp-1.6.0-h4d5522a_0 libxcb conda-forge/win-64::libxcb-1.17.0-h0e4246c_0 openjpeg conda-forge/win-64::openjpeg-2.5.4-h24db6dd_0 pillow conda-forge/win-64::pillow-11.3.0-py39hbad85af_0 pthread-stubs conda-forge/win-64::pthread-stubs-0.4-h0e40799_1002 pytorch-cuda pytorch/win-64::pytorch-cuda-11.8-h24eeafa_6 pytorch-mutex pytorch/noarch::pytorch-mutex-1.0-cuda torchaudio pytorch/win-64::torchaudio-2.5.1-py39_cu118 torchvision pytorch/win-64::torchvision-0.20.1-py39_cu118 xorg-libxau conda-forge/win-64::xorg-libxau-1.0.12-hba3369d_1 xorg-libxdmcp conda-forge/win-64::xorg-libxdmcp-1.1.5-hba3369d_1 The following packages will be REMOVED: libmagma-2.9.0-hb6a17ea_3 The following packages will be SUPERSEDED by a higher-priority channel: cuda-cudart conda-forge::cuda-cudart-12.9.79-he0c~ --> nvidia::cuda-cudart-11.8.89-0 cuda-cupti conda-forge::cuda-cupti-12.9.79-hac47~ --> nvidia::cuda-cupti-11.8.87-0 cuda-nvrtc conda-forge::cuda-nvrtc-12.9.86-hac47~ --> nvidia::cuda-nvrtc-11.8.89-0 libcublas conda-forge::libcublas-12.9.1.4-hac47~ --> nvidia::libcublas-11.11.3.6-0 libcufft conda-forge::libcufft-11.4.1.4-hac47a~ --> nvidia::libcufft-10.9.0.58-0 libcusolver conda-forge::libcusolver-11.7.5.82-ha~ --> nvidia::libcusolver-11.4.1.48-0 libcusparse conda-forge::libcusparse-12.5.10.65-h~ --> nvidia::libcusparse-11.7.5.86-0 The following packages will be DOWNGRADED: imath 3.2.1-h1608b31_0 --> 3.1.12-hbb528cf_0 libabseil 20250512.1-cxx17_habfad5f_0 --> 20250127.1-cxx17_h4eb7d71_0 libopencv 4.12.0-qt6_py39hee57e69_602 --> 4.12.0-qt6_py39h45bf879_600 libopenvino 2025.2.0-hbf28c98_1 --> 2025.0.0-hb1d9b14_3 libopenvino-auto-~ 2025.2.0-hdd9a157_1 --> 2025.0.0-h04f32e0_3 libopenvino-auto-~ 2025.2.0-hdd9a157_1 --> 2025.0.0-h04f32e0_3 libopenvino-heter~ 2025.2.0-hc39e7c6_1 --> 2025.0.0-hb61b842_3 libopenvino-intel~ 2025.2.0-hbf28c98_1 --> 2025.0.0-hb1d9b14_3 libopenvino-intel~ 2025.2.0-hbf28c98_1 --> 2025.0.0-hb1d9b14_3 libopenvino-ir-fr~ 2025.2.0-hc39e7c6_1 --> 2025.0.0-hb61b842_3 libopenvino-onnx-~ 2025.2.0-hee3bb10_1 --> 2025.0.0-hf9c6bd6_3 libopenvino-paddl~ 2025.2.0-hee3bb10_1 --> 2025.0.0-hf9c6bd6_3 libopenvino-pytor~ 2025.2.0-hac47afa_1 --> 2025.0.0-he0c23c2_3 libopenvino-tenso~ 2025.2.0-h293fe96_1 --> 2025.0.0-hd51e7bd_3 libopenvino-tenso~ 2025.2.0-hac47afa_1 --> 2025.0.0-he0c23c2_3 libprotobuf 6.31.1-hdcda5b4_2 --> 5.29.3-hd33f5f0_2 libtorch 2.7.1-cuda128_mkl_h2cc4d28_304 --> 2.5.1-cpu_mkl_hf54a72f_117 opencv 4.12.0-qt6_py39h5bb9280_602 --> 4.12.0-qt6_py39hb5cec6c_600 openexr 3.3.5-hed76565_1 --> 3.3.5-h4750f91_0 py-opencv 4.12.0-qt6_py39h58a0e84_602 --> 4.12.0-qt6_py39h54bbc76_600 pytorch 2.7.1-cuda128_mkl_py39_hf237e59_304 --> 2.5.1-cpu_mkl_py39_hab059a2_117 setuptools 80.9.0-pyhff2d567_0 --> 75.8.2-pyhff2d567_0 Proceed ([y]/n)? y done (Resnet) C:\Users\wangs>nvcc --version 'nvcc' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs>conda remove pytorch torchvision torchaudio pytorch-cuda libtorch "libopenvino*" -y PackagesNotFoundError: The following packages are missing from the target environment: - libopenvino* (Resnet) C:\Users\wangs>conda clean --packages --tarballs -y Will remove 199 (4.00 GB) tarball(s). Will remove 167 (7.13 GB) package(s). WARNING: cannot remove, file permissions: C:\Users\wangs\anaconda3\pkgs\pytorch-2.7.1-cuda128_mkl_py39_hf237e59_304 (Resnet) C:\Users\wangs>conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia --override-channels Channels: - pytorch - nvidia Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done # All requested packages already installed. (Resnet) C:\Users\wangs>conda list | findstr /I "torch cuda nvidia" cuda-cccl 12.9.27 0 nvidia cuda-cccl_win-64 12.9.27 0 nvidia cuda-cudart 11.8.89 0 nvidia cuda-cudart-dev 11.8.89 0 nvidia cuda-cudart_win-64 12.9.79 he0c23c2_0 conda-forge cuda-cupti 11.8.87 0 nvidia cuda-libraries 11.8.0 0 nvidia cuda-libraries-dev 11.8.0 0 nvidia cuda-nvrtc 11.8.89 0 nvidia cuda-nvrtc-dev 11.8.89 0 nvidia cuda-nvtx 11.8.86 0 nvidia cuda-profiler-api 12.9.79 0 nvidia cuda-runtime 11.8.0 0 nvidia cuda-version 12.9 h4f385c5_3 conda-forge libcublas 11.11.3.6 0 nvidia libcublas-dev 11.11.3.6 0 nvidia libcufft 10.9.0.58 0 nvidia libcufft-dev 10.9.0.58 0 nvidia libcurand-dev 10.3.5.147 0 nvidia libcusolver 11.4.1.48 0 nvidia libcusolver-dev 11.4.1.48 0 nvidia libcusparse 11.7.5.86 0 nvidia libcusparse-dev 11.7.5.86 0 nvidia libnpp 11.8.0.86 0 nvidia libnpp-dev 11.8.0.86 0 nvidia libnvjpeg 11.9.0.86 0 nvidia libnvjpeg-dev 11.9.0.86 0 nvidia libopenvino-pytorch-frontend 2025.0.0 he0c23c2_3 conda-forge libtorch 2.5.1 cpu_mkl_hf54a72f_117 conda-forge pytorch 2.5.1 cpu_mkl_py39_hab059a2_117 conda-forge pytorch-cuda 11.8 h24eeafa_6 pytorch pytorch-mutex 1.0 cuda pytorch torchaudio 2.5.1 pypi_0 pypi torchvision 0.20.1 pypi_0 pypi (Resnet) C:\Users\wangs>conda remove pytorch torchvision torchaudio pytorch-cuda libtorch "libopenvino*" "cuda-cccl*" cuda-cccl cuda-cccl_win-64 cuda-cudart_win-64 cuda-profiler-api cuda-version -y PackagesNotFoundError: The following packages are missing from the target environment: - cuda-cccl* (Resnet) C:\Users\wangs>conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia --override-channels Channels: - pytorch - nvidia Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done # All requested packages already installed. (Resnet) C:\Users\wangs>conda list | findstr /I "torch cuda nvidia" cuda-cccl 12.9.27 0 nvidia cuda-cccl_win-64 12.9.27 0 nvidia cuda-cudart 11.8.89 0 nvidia cuda-cudart-dev 11.8.89 0 nvidia cuda-cudart_win-64 12.9.79 he0c23c2_0 conda-forge cuda-cupti 11.8.87 0 nvidia cuda-libraries 11.8.0 0 nvidia cuda-libraries-dev 11.8.0 0 nvidia cuda-nvrtc 11.8.89 0 nvidia cuda-nvrtc-dev 11.8.89 0 nvidia cuda-nvtx 11.8.86 0 nvidia cuda-profiler-api 12.9.79 0 nvidia cuda-runtime 11.8.0 0 nvidia cuda-version 12.9 h4f385c5_3 conda-forge libcublas 11.11.3.6 0 nvidia libcublas-dev 11.11.3.6 0 nvidia libcufft 10.9.0.58 0 nvidia libcufft-dev 10.9.0.58 0 nvidia libcurand-dev 10.3.5.147 0 nvidia libcusolver 11.4.1.48 0 nvidia libcusolver-dev 11.4.1.48 0 nvidia libcusparse 11.7.5.86 0 nvidia libcusparse-dev 11.7.5.86 0 nvidia libnpp 11.8.0.86 0 nvidia libnpp-dev 11.8.0.86 0 nvidia libnvjpeg 11.9.0.86 0 nvidia libnvjpeg-dev 11.9.0.86 0 nvidia libopenvino-pytorch-frontend 2025.0.0 he0c23c2_3 conda-forge libtorch 2.5.1 cpu_mkl_hf54a72f_117 conda-forge pytorch 2.5.1 cpu_mkl_py39_hab059a2_117 conda-forge pytorch-cuda 11.8 h24eeafa_6 pytorch pytorch-mutex 1.0 cuda pytorch torchaudio 2.5.1 pypi_0 pypi torchvision 0.20.1 pypi_0 pypi (Resnet) C:\Users\wangs>conda remove -y \ PackagesNotFoundError: The following packages are missing from the target environment: - \ (Resnet) C:\Users\wangs> "pytorch" "libtorch" "pytorch-cuda" "pytorch-mutex" \ '"pytorch"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs> "libopenvino*" \ '"libopenvino*"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs> "cuda-cccl*" "cuda-cudart_win-64" "cuda-profiler-api" "cuda-version" \ '"cuda-cccl*"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs> conda remove -y \ PackagesNotFoundError: The following packages are missing from the target environment: - \ (Resnet) C:\Users\wangs> "pytorch" "libtorch" "pytorch-cuda" "pytorch-mutex" \ '"pytorch"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs> "libopenvino*" \ '"libopenvino*"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs> "cuda-cccl*" "cuda-cudart_win-64" "cuda-profiler-api" "cuda-version" \ '"cuda-cccl*"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs>conda remove -y pytorch libtorch pytorch-cuda pytorch-mutex libopenvino-pytorch-frontend libopenvino libopenvino-auto-batch libopenvino-dev libopenvino-hetero-plugin libopenvino-ir-frontend libopenvino-onnx-frontend libopenvino-paddle-frontend libopenvino-pytorch-frontend libopenvino-tensorflow-frontend libopenvino-tensorflow-lite-frontend cuda-cccl cuda-cccl_win-64 cuda-cudart_win-64 cuda-profiler-api cuda-version PackagesNotFoundError: The following packages are missing from the target environment: - libopenvino-dev - libopenvino-auto-batch (Resnet) C:\Users\wangs>conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia --override-channels Channels: - pytorch - nvidia Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done # All requested packages already installed. (Resnet) C:\Users\wangs>conda list | findstr /I "torch cuda nvidia openvino" cuda-cccl 12.9.27 0 nvidia cuda-cccl_win-64 12.9.27 0 nvidia cuda-cudart 11.8.89 0 nvidia cuda-cudart-dev 11.8.89 0 nvidia cuda-cudart_win-64 12.9.79 he0c23c2_0 conda-forge cuda-cupti 11.8.87 0 nvidia cuda-libraries 11.8.0 0 nvidia cuda-libraries-dev 11.8.0 0 nvidia cuda-nvrtc 11.8.89 0 nvidia cuda-nvrtc-dev 11.8.89 0 nvidia cuda-nvtx 11.8.86 0 nvidia cuda-profiler-api 12.9.79 0 nvidia cuda-runtime 11.8.0 0 nvidia cuda-version 12.9 h4f385c5_3 conda-forge libcublas 11.11.3.6 0 nvidia libcublas-dev 11.11.3.6 0 nvidia libcufft 10.9.0.58 0 nvidia libcufft-dev 10.9.0.58 0 nvidia libcurand-dev 10.3.5.147 0 nvidia libcusolver 11.4.1.48 0 nvidia libcusolver-dev 11.4.1.48 0 nvidia libcusparse 11.7.5.86 0 nvidia libcusparse-dev 11.7.5.86 0 nvidia libnpp 11.8.0.86 0 nvidia libnpp-dev 11.8.0.86 0 nvidia libnvjpeg 11.9.0.86 0 nvidia libnvjpeg-dev 11.9.0.86 0 nvidia libopenvino 2025.0.0 hb1d9b14_3 conda-forge libopenvino-auto-batch-plugin 2025.0.0 h04f32e0_3 conda-forge libopenvino-auto-plugin 2025.0.0 h04f32e0_3 conda-forge libopenvino-hetero-plugin 2025.0.0 hb61b842_3 conda-forge libopenvino-intel-cpu-plugin 2025.0.0 hb1d9b14_3 conda-forge libopenvino-intel-gpu-plugin 2025.0.0 hb1d9b14_3 conda-forge libopenvino-ir-frontend 2025.0.0 hb61b842_3 conda-forge libopenvino-onnx-frontend 2025.0.0 hf9c6bd6_3 conda-forge libopenvino-paddle-frontend 2025.0.0 hf9c6bd6_3 conda-forge libopenvino-pytorch-frontend 2025.0.0 he0c23c2_3 conda-forge libopenvino-tensorflow-frontend 2025.0.0 hd51e7bd_3 conda-forge libopenvino-tensorflow-lite-frontend 2025.0.0 he0c23c2_3 conda-forge libtorch 2.5.1 cpu_mkl_hf54a72f_117 conda-forge pytorch 2.5.1 cpu_mkl_py39_hab059a2_117 conda-forge pytorch-cuda 11.8 h24eeafa_6 pytorch pytorch-mutex 1.0 cuda pytorch torchaudio 2.5.1 pypi_0 pypi torchvision 0.20.1 pypi_0 pypi (Resnet) C:\Users\wangs>conda list | findstr /I "torch cuda nvidia openvino" cuda-cccl 12.9.27 0 nvidia cuda-cccl_win-64 12.9.27 0 nvidia cuda-cudart 11.8.89 0 nvidia cuda-cudart-dev 11.8.89 0 nvidia cuda-cudart_win-64 12.9.79 he0c23c2_0 conda-forge cuda-cupti 11.8.87 0 nvidia cuda-libraries 11.8.0 0 nvidia cuda-libraries-dev 11.8.0 0 nvidia cuda-nvrtc 11.8.89 0 nvidia cuda-nvrtc-dev 11.8.89 0 nvidia cuda-nvtx 11.8.86 0 nvidia cuda-profiler-api 12.9.79 0 nvidia cuda-runtime 11.8.0 0 nvidia cuda-version 12.9 h4f385c5_3 conda-forge libcublas 11.11.3.6 0 nvidia libcublas-dev 11.11.3.6 0 nvidia libcufft 10.9.0.58 0 nvidia libcufft-dev 10.9.0.58 0 nvidia libcurand-dev 10.3.5.147 0 nvidia libcusolver 11.4.1.48 0 nvidia libcusolver-dev 11.4.1.48 0 nvidia libcusparse 11.7.5.86 0 nvidia libcusparse-dev 11.7.5.86 0 nvidia libnpp 11.8.0.86 0 nvidia libnpp-dev 11.8.0.86 0 nvidia libnvjpeg 11.9.0.86 0 nvidia libnvjpeg-dev 11.9.0.86 0 nvidia libopenvino 2025.0.0 hb1d9b14_3 conda-forge libopenvino-auto-batch-plugin 2025.0.0 h04f32e0_3 conda-forge libopenvino-auto-plugin 2025.0.0 h04f32e0_3 conda-forge libopenvino-hetero-plugin 2025.0.0 hb61b842_3 conda-forge libopenvino-intel-cpu-plugin 2025.0.0 hb1d9b14_3 conda-forge libopenvino-intel-gpu-plugin 2025.0.0 hb1d9b14_3 conda-forge libopenvino-ir-frontend 2025.0.0 hb61b842_3 conda-forge libopenvino-onnx-frontend 2025.0.0 hf9c6bd6_3 conda-forge libopenvino-paddle-frontend 2025.0.0 hf9c6bd6_3 conda-forge libopenvino-pytorch-frontend 2025.0.0 he0c23c2_3 conda-forge libopenvino-tensorflow-frontend 2025.0.0 hd51e7bd_3 conda-forge libopenvino-tensorflow-lite-frontend 2025.0.0 he0c23c2_3 conda-forge libtorch 2.5.1 cpu_mkl_hf54a72f_117 conda-forge pytorch 2.5.1 cpu_mkl_py39_hab059a2_117 conda-forge pytorch-cuda 11.8 h24eeafa_6 pytorch pytorch-mutex 1.0 cuda pytorch torchaudio 2.5.1 pypi_0 pypi torchvision 0.20.1 pypi_0 pypi (Resnet) C:\Users\wangs>where python C:\Users\wangs\anaconda3\envs\Resnet\python.exe C:\Users\wangs\AppData\Local\Programs\Python\Python313\python.exe C:\Users\wangs\AppData\Local\Microsoft\WindowsApps\python.exe (Resnet) C:\Users\wangs>where pip C:\Users\wangs\anaconda3\envs\Resnet\Scripts\pip.exe C:\Users\wangs\AppData\Local\Programs\Python\Python313\Scripts\pip.exe (Resnet) C:\Users\wangs>where torch 信息: 用提供的模式无法找到文件。 (Resnet) C:\Users\wangs>pip show torch Name: torch Version: 2.5.1 Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration Home-page: https://pytorch.org/ Author: PyTorch Team Author-email: packages@pytorch.org License: BSD-3-Clause Location: c:\users\wangs\anaconda3\envs\resnet\lib\site-packages Requires: filelock, fsspec, jinja2, networkx, sympy, typing-extensions Required-by: monai, torchaudio, torchvision (Resnet) C:\Users\wangs>python -m torch.utils.collect_env Traceback (most recent call last): File "C:\Users\wangs\anaconda3\envs\Resnet\lib\runpy.py", line 188, in _run_module_as_main mod_name, mod_spec, code = _get_module_details(mod_name, _Error) File "C:\Users\wangs\anaconda3\envs\Resnet\lib\runpy.py", line 111, in _get_module_details __import__(pkg_name) File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\__init__.py", line 367, in <module> from torch._C import * # noqa: F403 ImportError: DLL load failed while importing _C: 找不到指定的程序。
11-24
3.04 OBSERVATION DATA M: Mixed RINEX VERSION / TYPE CHC CHC 19700101 000000 UTC PGM / RUN BY / DATE KEYLAB MARKER NAME KEYLAB MARKER NUMBER CHC CHC OBSERVER / AGENCY 1113366 CHC P5 1.5.4 REC # / TYPE / VERS 1113366 ANT # / TYPE -2060476.9498 4794809.4259 3654671.8175 APPROX POSITION XYZ 0.0000 0.0000 0.0000 ANTENNA: DELTA H/E/N HUACE ANT PHASECENTER COMMENT G 20 C1C L1C D1C S1C C2P L2P D2P S2P C2X L2X D2X S2X C5Q SYS / # / OBS TYPES L5Q D5Q S5Q C5I L5I D5I S5I SYS / # / OBS TYPES R 12 C1C L1C D1C S1C C2C L2C D2C S2C C2P L2P D2P S2P SYS / # / OBS TYPES E 24 C1B L1B D1B S1B C1C L1C D1C S1C C5I L5I D5I S5I C5Q SYS / # / OBS TYPES L5Q D5Q S5Q C7I L7I D7I S7I C7Q L7Q D7Q S7Q SYS / # / OBS TYPES C 36 C2I L2I D2I S2I C7I L7I D7I S7I C6I L6I D6I S6I C2Q SYS / # / OBS TYPES L2Q D2Q S2Q C7Q L7Q D7Q S7Q C6Q L6Q D6Q S6Q C1D L1D SYS / # / OBS TYPES D1D S1D C5D L5D D5D S5D C1C L1C D1C S1C SYS / # / OBS TYPES 1.000 INTERVAL 2024 5 30 9 0 0.0000000 GPS TIME OF FIRST OBS 2024 5 30 9 59 59.0000000 GPS TIME OF LAST OBS G SYS / PHASE SHIFT R SYS / PHASE SHIFT E SYS / PHASE SHIFT C SYS / PHASE SHIFT C1C 0.000 C1P 0.000 C2C 0.000 C2P 0.000 GLONASS COD/PHS/BIS END OF HEADER > 2024 5 30 9 22 35.0000000 0 52 G05 20877429.600 109711648.475 -992.073 46.750 20877426.643 85489581.633 -773.041 48.250 20877427.041 85489794.626 -773.041 46.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 G07 26073065.629 137014840.702 -1755.096 32.000 0.000 0.000 0.000 0.000 26073064.766 106764846.008 -1367.327 31.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 G11 23243081.162 122143166.232 -2833.763 40.000 23243082.574 95176462.501 -2208.125 38.000 23243082.543 95176596.495 -2208.088 41.000 23243086.399 91210940.349 -2116.184 39.750 0.000 0.000 0.000 0.000 G13 19950860.409 104842530.711 -362.042 48.000 19950857.007 81695480.017 -282.113 47.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 G15 20262485.998 106480185.960 1679.724 47.750 20262483.660 82971600.053 1308.856 49.250 20262484.045 82971842.048 1308.847 48.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 G18 23210491.234 121972029.641 3125.751 39.500 23210489.706 95043142.442 2435.645 37.750 23210489.976 95043164.455 2435.580 41.750 23210493.021 91083041.465 2334.188 39.250 0.000 0.000 0.000 0.000 G20 22033261.532 115785563.446 -1783.529 43.000 22033259.184 90222491.367 -1389.763 40.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 G23 25100882.999 131906049.927 2480.363 33.250 0.000 0.000 0.000 0.000 25100888.307 102783926.031 1932.786 35.750 25100893.334 98501312.224 1852.331 32.000 0.000 0.000 0.000 0.000 G24 25105739.584 131931637.121 3618.458 29.750 0.000 0.000 0.000 0.000 25105757.424 102803989.201 2819.657 34.000 25105760.222 98520508.066 2702.265 34.000 0.000 0.000 0.000 0.000 G29 21534069.994 113162306.471 -1054.965 45.500 21534068.363 88178406.709 -822.056 47.500 21534068.653 88178470.709 -822.103 44.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 G30 24190857.759 127123902.225 -614.151 35.500 24190859.367 99057551.906 -478.547 32.500 24190859.631 99057684.922 -478.641 37.000 24190859.212 94930293.855 -458.541 37.000 0.000 0.000 0.000 0.000 R01 19446212.819 103951159.511 -217.905 51.500 0.000 0.000 0.000 0.000 19446216.136 80851332.553 -169.523 45.750 R02 21773400.984 116187116.639 2676.776 48.500 0.000 0.000 0.000 0.000 21773408.066 90367953.545 2081.949 44.500 R08 21770875.987 116582032.654 -3276.546 44.000 0.000 0.000 0.000 0.000 21770875.951 90675274.923 -2548.456 43.500 R17 22955903.931 122841700.053 4110.577 43.000 0.000 0.000 0.000 0.000 22955906.633 95543539.551 3197.139 40.750 R23 20479991.800 109554125.837 -2933.336 49.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 R24 19405477.961 103769815.440 1327.125 54.500 0.000 0.000 0.000 0.000 19405479.748 80709953.337 1032.211 50.500 E03 0.000 0.000 0.000 0.000 23785848.093 124995501.215 -1084.693 45.750 0.000 0.000 0.000 0.000 23785848.074 93341190.148 -810.022 45.000 0.000 0.000 0.000 0.000 23785849.975 95776159.000 -831.117 52.750 E05 0.000 0.000 0.000 0.000 26121141.675 137267504.893 -2719.471 31.250 0.000 0.000 0.000 0.000 26121144.853 102505189.905 -2031.042 32.000 0.000 0.000 0.000 0.000 26121146.482 105179236.948 -2083.653 39.500 E07 0.000 0.000 0.000 0.000 27958780.637 146924439.988 2886.197 29.250 0.000 0.000 0.000 0.000 27958796.301 109716402.560 2155.448 32.500 0.000 0.000 0.000 0.000 27958796.695 112578574.469 2211.728 40.250 E08 0.000 0.000 0.000 0.000 23978736.356 126009207.232 1576.980 45.750 0.000 0.000 0.000 0.000 23978735.757 94098131.980 1177.653 44.500 0.000 0.000 0.000 0.000 23978737.670 96552915.900 1208.349 52.500 E13 0.000 0.000 0.000 0.000 25027498.987 131520472.917 2102.470 41.250 0.000 0.000 0.000 0.000 25027500.020 98213459.829 1570.047 40.750 0.000 0.000 0.000 0.000 25027501.785 100775549.598 1611.006 48.500 E15 0.000 0.000 0.000 0.000 23362195.011 122769172.952 -150.446 46.250 0.000 0.000 0.000 0.000 23362195.790 91678463.989 -112.350 46.000 0.000 0.000 0.000 0.000 23362197.607 94070075.203 -115.238 53.750 E34 0.000 0.000 0.000 0.000 26125352.278 137289610.721 -2176.548 38.000 0.000 0.000 0.000 0.000 26125357.403 102521546.076 -1625.339 37.500 0.000 0.000 0.000 0.000 26125358.968 105196027.384 -1667.668 44.750 C01 37550980.860 195537811.101 -2.279 42.500 37550983.035 151202258.190 -1.737 47.000 37550982.569 158890514.592 -1.884 41.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C02 37528192.415 195419149.425 44.287 40.000 37528191.872 151110487.141 34.258 47.750 37528192.434 158794083.012 35.872 41.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C03 36865743.215 191969603.977 7.044 45.250 36865742.619 148443086.335 5.480 49.500 36865741.916 155991042.436 5.753 43.750 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C04 38984941.100 203004837.349 -17.096 38.000 38984942.215 156976218.610 -13.220 44.250 38984941.155 164958044.168 -13.907 37.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C05 39683601.115 206642928.794 42.285 35.000 39683605.705 159789388.992 32.889 42.750 39683603.741 167914326.777 34.419 37.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C06 39495435.307 205663161.804 1708.328 35.500 39495441.059 159032147.026 1321.067 41.500 39495436.893 167118465.900 1388.283 36.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C07 39651246.228 206474419.172 -1630.631 35.750 39651250.448 159659078.583 -1260.848 42.750 39651245.628 167777323.883 -1325.088 36.750 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C08 36603434.414 190603692.890 151.678 44.750 36603431.618 147386973.931 117.323 50.750 36603429.164 154881201.275 123.230 45.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C10 38643041.664 201224439.907 -1675.642 37.750 38643047.296 155599515.968 -1295.735 43.250 38643042.359 163511355.486 -1361.596 37.750 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C11 22503584.568 117182088.349 1522.753 46.750 22503585.350 90612705.844 1177.522 52.750 22503581.883 95220103.070 1237.427 48.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C12 22234928.549 115783096.269 -1780.164 48.000 22234929.910 89531008.857 -1376.472 55.000 22234927.232 94083404.049 -1446.514 50.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C13 36722130.274 191221791.618 220.885 46.250 36722134.926 147864945.177 170.874 49.250 36722131.388 155383474.884 179.538 45.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C16 39409317.964 205214713.634 1714.708 38.500 39409326.883 158685393.772 1325.938 42.500 39409321.289 166754075.114 1393.219 35.750 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C21 22078926.316 114970780.256 -679.425 51.750 0.000 0.000 0.000 0.000 22078921.392 93423475.999 -552.090 51.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 22078926.336 116025567.925 -685.668 48.250 22078922.784 86642793.979 -511.999 46.000 0.000 0.000 0.000 0.000 C22 24516014.521 127661321.638 -2518.144 41.750 0.000 0.000 0.000 0.000 24516010.297 103735514.429 -2046.239 42.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 24516014.629 128832510.442 -2541.300 37.750 24516010.944 96206366.136 -1897.611 36.500 0.000 0.000 0.000 0.000 C34 21778953.387 113408745.958 -123.956 50.500 0.000 0.000 0.000 0.000 21778953.999 92153996.336 -100.725 50.750 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 21778953.386 114449186.989 -125.077 47.000 21778952.660 85465397.454 -93.379 44.500 0.000 0.000 0.000 0.000 C36 26814858.160 139632004.303 799.385 34.750 0.000 0.000 0.000 0.000 26814866.354 113462478.552 649.679 37.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 26814857.837 140913026.849 806.693 30.500 26814868.322 105227299.528 602.720 32.250 0.000 0.000 0.000 0.000 C38 36328032.270 189169616.383 103.836 48.750 0.000 0.000 0.000 0.000 36328029.763 153715886.332 84.376 49.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 36328032.108 190905109.260 104.802 45.250 36328029.323 142559095.970 78.283 44.000 0.000 0.000 0.000 0.000 C39 38735683.620 201706908.488 1763.052 41.250 0.000 0.000 0.000 0.000 38735683.319 163903716.682 1432.651 41.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 38735683.828 203557498.226 1779.208 38.500 38735684.438 152007521.275 1328.574 36.750 0.000 0.000 0.000 0.000 C40 39900486.347 207772264.514 -1875.885 36.250 0.000 0.000 0.000 0.000 39900492.276 168831956.267 -1524.428 37.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 39900485.662 209678391.400 -1892.969 33.250 39900494.765 156577990.200 -1413.659 32.750 0.000 0.000 0.000 0.000 C42 23419200.058 121949987.842 1674.679 45.750 0.000 0.000 0.000 0.000 23419209.938 99094552.113 1360.753 47.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 23419200.726 123068854.463 1690.052 42.750 23419211.355 91902239.110 1262.049 41.750 0.000 0.000 0.000 0.000 C43 24248939.680 126270615.346 2390.010 42.750 0.000 0.000 0.000 0.000 24248940.790 102605251.094 1942.010 42.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 24248939.348 127429111.202 2411.818 39.250 24248941.263 95158105.703 1801.062 37.000 0.000 0.000 0.000 0.000 这是什么文件
11-08
Successfully installed nvidia-cublas-cu12-12.4.2.65 nvidia-cuda-cupti-cu12-12.4.99 nvidia-cuda-nvrtc-cu12-12.4.99 nvidia-cuda-runtime-cu12-12.4.99 nvidia-cufft-cu12-11.2.0.44 nvidia-curand-cu12-10.3.5.119 nvidia-cusolver-cu12-11.6.0.99 nvidia-cusparse-cu12-12.3.0.142 nvidia-nvjitlink-cu12-12.4.99 nvidia-nvtx-cu12-12.4.99 torch-2.4.1+cu124 torchvision-0.19.1+cu124 (yolo_env) pai@paiROS:~$ python Python 3.8.20 (default, Oct 3 2024, 15:24:27) [GCC 11.2.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> print(torch.cuda.get_device_name(0)) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/pai/anaconda3/envs/yolo_env/lib/python3.8/site-packages/torch/cuda/__init__.py", line 435, in get_device_name return get_device_properties(device).name File "/home/pai/anaconda3/envs/yolo_env/lib/python3.8/site-packages/torch/cuda/__init__.py", line 465, in get_device_properties _lazy_init() # will define _get_device_properties File "/home/pai/anaconda3/envs/yolo_env/lib/python3.8/site-packages/torch/cuda/__init__.py", line 314, in _lazy_init torch._C._cuda_init() RuntimeError: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. >>> print(torch.version.cuda) 12.4 >>> print(torch.cuda.is_available()) /home/pai/anaconda3/envs/yolo_env/lib/python3.8/site-packages/torch/cuda/__init__.py:128: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.) return torch._C._cuda_getDeviceCount() > 0 False >>> exit() (yolo_env) pai@paiROS:~$ nvcc -v nvcc fatal : No input files specified; use option --help for more inform
03-19
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值