Anaconda管理多个python版本,并在pycharm中进行使用

在有多个项目的情况下,难免会使用到多个版本的python环境,所以想要记录一下如何使用Anaconda来对多个版本进行管理,并且如何在pycharm编译器中进行使用。

  • 在python官网中找到自己所需要的版本进行下载,python官网地址:https://www.python.org/
    python版本下载
  • 安装python环境,这一步网上有很多资源,可以自己找一哈,记得配置环境变量就好,可以通过cmd来检查自己的环境是否安装好了,输入python --version来查看当前python的版本号。
  • 安装Anaconda,这个网上也有很多资源,大家可以找一下。

最重要的是现在这个,都安装好之后打开cmd,然后

1.输入conda info --envs,这个命令用来查看当前系统中已有的python环境。

2.输入conda create --name python37 python=3.7,这个命令用来创建一个环境名称为python37,并指定python版本为3.7,conda会自动下载最新版的python3.7,并自动部署,其中这个环境名称可以换成自己的,然后指定自己的python版本。这里会询问一下包是否需要安装,可以选择y。

3.输入conda.bat activate python37,这个命令用来激活刚刚创建的虚拟环境。环境如果激活了可以看到前面会多一个环境名称。

4.激活虚拟环境后就可以下载自己项目所需要的依赖包了。

  •  上面的步骤执行后,就可以进入pycharm中来进行使用这个虚拟环境了。

 打开pycharm,选择“File”,点击“setting”,选中“Project Interpreter”,点击Add Local Interprete

在新出来的页面中,点击“Conda Environment”,然后需要先选择自己上面Anaconda中的一个路径:anaconda\Scripts\conda.exe所在的路径(这个路径需要你自己找到自己的哈),然后选择“Use existing environment”,在下拉框中选择自己刚刚创建的虚拟环境名称即可。

 完成上述操作后,就可以在pycharm中使用自己创建好的虚拟环境了,这样就实现了使用Anaconda来管理多个版本的python环境了!!!!!

在进行数据分析或机器学习项目时,不同的项目往往需要不同的库版本和依赖关系,这可能导致依赖包冲突。为了解决这一问题,我们可以利用Anaconda的虚拟环境功能在PyCharm中创建多个隔离的Python环境。 参考资源链接:[PyCharm中利用Anaconda搭建Python环境的详细步骤](https://wenku.csdn.net/doc/7b6fdr5c73?spm=1055.2569.3001.10343) 首先,确保你已经安装了AnacondaPyCharm中配置了Conda环境。接下来,你可以通过以下步骤创建和管理Python环境: 1. 打开PyCharm,进入`File` -> `Settings`(Mac上为`PyCharm` -> `Preferences`)。 2. 在设置窗口中,选择`Project` -> `Project Interpreter`。 3. 在项目解释器界面,点击齿轮图标选择`Add`,然后选择`Conda Environment`。 4. 在弹出的选项中选择`Create New Environment`,为环境命名,指定所需的Python解释器版本。 5. 在创建环境时,你可以选择需要安装的包,确保为每个项目定制环境。 例如,如果你正在处理一个需要TensorFlow 2.x和另一个需要TensorFlow 1.x的项目,你可以为每个项目创建一个专门的环境: - 为TensorFlow 2.x项目创建环境: ``` conda create -n tf2 python=3.8 tensorflow ``` - 为TensorFlow 1.x项目创建环境: ``` conda create -n tf1 python=3.8 tensorflow-gpu=1.15 ``` 在PyCharm中,你需要为每个项目指定对应的Conda环境作为项目解释器。这样,每个项目就会在独立的环境中运行,相互之间不会产生冲突。 此外,如果项目依赖包版本较多,建议使用`requirements.txt`文件或`environment.yml`文件来管理依赖包,这样可以方便地复制和重建环境。 最后,如果你想查看环境中所有包及其版本,可以使用以下命令: ``` conda list ``` 通过上述步骤,你可以在PyCharm中有效地利用Anaconda管理多个Python环境,从而避免项目间的依赖冲突,确保项目的顺利运行。 参考资源链接:[PyCharm中利用Anaconda搭建Python环境的详细步骤](https://wenku.csdn.net/doc/7b6fdr5c73?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值