概率论与数理统计_重要例题之概率论部分

本文深入探讨了概率论与数理统计的基础概念,包括随机变量的范围、有放回与无放回抽样、条件概率、全概率公式、贝叶斯公式、离散与连续型随机变量及其分布、数学期望与方差等。通过实例解析了各种概率模型,如取球问题、出生月份问题、飞机搜寻问题,以及各种分布,如泊松分布、几何分布、超几何分布等,帮助读者掌握核心知识点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章主要是介绍一些简单的例题介绍,其实还有知识介绍,可以见本专栏的文章“概率论与数理统计_知识总结之概率论部分

随机变量的范围特别重要

目录

概率

有放回抽样和无放回抽样

出生月份

取球1

取球2

条件概率

存活概率

取球

全概率公式

取球

贝叶斯公式

搜寻飞机【重点】

相互独立事件

证明

离散型随机变量及其概率分布

根据性质求常数

泊松分布

几何分布

超几何分布

分布函数

打靶

连续型随机变量及其概率密度函数

指数分布

打电话

正态分布

简单性质

定制门高

随机变量函数的分布【重点】

g(x)是连续型

基础题目

进阶题目

g(x)不是连续型

基础题目

进阶题目1

进阶题目2

二维随机变量

根据概率密度求分布函数和概率

连续场合的边缘分布概率

条件分布概率

相互独立的随机变量

两个随机变量的函数的分布【重点】

Z=X+Y形式

𝑴=𝐦𝐚𝐱(𝑿,𝒀)和𝑵=𝐦𝐢𝐧(𝑿,𝒀)的分布

数学期望

等车

判断是否成立

随机变量函数的数学期望

方差

正态分布之气缸与活塞

指数分布

协方差与相关系数


概率

有放回抽样和无放回抽样

箱中有100 件外形一样的同批次产品,其中正品60 件,次品40件。现按如下方式抽样:
(1)每次任取一件,观察后放回;
(2)每次任取一件,观察后不放回
问从这100 件产品中,任意抽取3件,其中有两件次品的概率。

【注意】不放回时的分母

出生月份

 一年中有12 个月,假定每人出生的月份是等可能的,任选四个人,求下列事件的概率:
(1)四个人出生的月份全不相同;
(2)四个人中至少有两个人出生的月份相同。

取球1

袋中有a个白球、b个红球,依次将球一只只摸出,不放回,求第k次摸到白球的概率(1≤k≤a+b)。

解: 设A={第k次摸到白球},由于并不关心第k次以后的取球结果,可设想将球编号,一只只抽取直至取出第k只球为止。

则基本事件总数是从a+b只编上号的球中选出k只球进行排列的排列种数,即n=A_{a+b}^{k};A发生意味着第k次取到白球。
此白球可能是a只白球中的任一只;而前k-1次取的球则可能是除此白球以外的其余a+b-1只中的任k-1只,故由乘法原理得,k_{A}=A_{a}^{1}\cdot A_{a+b-1}^{k-1}

所以,P(A)=\frac{k_{A}}{n}=\frac{A_{a}^{1}\cdot A_{a+b-1}^{k-1}}{A_{a+b}^{k}}=\frac{a\cdot (a+b-1)(a+b-2)\cdots \left ( a+b-k+1 \right )}{\left ( a+b \right )\left ( a+b-1 \right )\cdots \left ( a+b-k+1 \right )}=\frac{a}{a+b}

取球2

袋中有红、黄、白色球各一个,每次任取一个,有返回地取三次,求“取到的三球里没有红球或者没有黄球”的概率。

解:设A={没有红球},B={没有黄球},C={没有红球或没有黄球},则C=A∪B,故

P(C)=P(A∪B)=P(A)+P(B)-P(AB)=\frac{2^{3}}{3^{3}}+\frac{2^{3}}{3^{3}}-\frac{1^{3}}{3^{3}}=\frac{8+8-1}{27}=\frac{15}{27}=\frac{5}{9}

条件概率

存活概率

设一只乌龟存活60年的概率为0.89,能存活100年的概率为0.83,若现在这只乌龟已经60岁,则它能再存活40年的概率是多少?

解:设A={存活60年},B={存活100年}
根据题意可知:P(A)=0.89,P(B)=0.83
又因为B⸦A,所以P(AB)=P(B)=0.83
P(B|A)=P(AB)/P(A)=0.83/0.89

取球

从装有10 个白球和20 个红球的盒子中,第一次取出5 个小球以后,第二次又取出10 个球,令A={ 第一次取出5 个红球},B={第二次取出5 个红球和5 个白球},求P(AB)。

【注意】主要是知晓用条件概率的思想 

全概率公式

取球

有红,黄,蓝三个盒子,分别装有2白3黑,3白2黑和1白4黑的球。现有一均匀立方体,1面是红色,2面是黄色,3面是蓝色。抛掷此立方体,根据向上一面的颜色从对应颜色的盒中任取一球。求取到白球的概率。

解:令𝐵1={红色向上},𝐵2={黄色向上},𝐵3={蓝色向上}

可知:𝐵1∩𝐵2=∅,𝐵1∩𝐵3=∅,𝐵2∩𝐵3=∅并且𝐵1∪𝐵2∪𝐵3=Ω

则:𝐴={取到白球}={红盒取到白球}∪{黄盒取到白球}∪{蓝盒取到白球}𝑃(𝐴)=𝑃(𝐴𝐵1∪𝐴𝐵2∪𝐴𝐵3)=𝑃(𝐴𝐵1)+𝑃(𝐴𝐵2)+𝑃(𝐴𝐵3)=𝑃(𝐴|𝐵1)𝑃(𝐵1)+𝑃(𝐴|𝐵2)𝑃(𝐵2)+𝑃(𝐴|𝐵3)𝑃(𝐵3)=25/16+35/13+15/12=11/30

【注意】记得在解题时说明条件(即字母代表的事件含义事件两两互不相容

贝叶斯公式

搜寻飞机【重点】

飞机坠落在甲、乙、丙、丁四个区域之一,搜救部门判断其概率分别为0.3, 0.2, 0.4, 0.1. 现打算逐个搜索四个区域。若飞机坠落在甲、乙、丙、丁四区域内,被搜救部门发现的概率分别为0.8, 0.7, 0.75, 0.9。问:
(1) 首先应该搜索哪个区域?
(2) 若搜索丙区域后,未发现飞机,则此时飞机落入四个区域的概率又是多少呢?

解:设B1={飞机坠落在甲区域},B2={飞机坠落在乙区域},B3={飞机坠落在丙区域},B4={飞机坠落在丁区域}A={首次搜索未在丙区域发现飞机}
(1) 𝑃𝐵1=0.3,𝑃(𝐵2)=0.2,𝑃(𝐵3)=0.4,𝑃(𝐵4)=0.1,则此时应先搜索丙区域
(2) 

【注意】在回答第1问时,没有考虑是否被发现,而是直接看飞机坠落区域的概率;在回答第2问时,考虑应该丙区域时的值与题目中不同,以及其他三个区域是乘1

相互独立事件

证明

设𝐴,𝐵是两个随机事件,且0<𝑃(𝐴)<1,,问:𝐴,𝐵是否相互独立?

【注意】公式的使用条件以及P(BA/)=P(B)-P(AB)

离散型随机变量及其概率分布

根据性质求常数

若随机变量X的概率分布律为,求常数c。
提示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值