概率论与数理统计_重要例题之概率论部分

这篇文章主要是介绍一些简单的例题介绍,其实还有知识介绍,可以见本专栏的文章“概率论与数理统计_知识总结之概率论部分

随机变量的范围特别重要

目录

概率

有放回抽样和无放回抽样

出生月份

取球1

取球2

条件概率

存活概率

取球

全概率公式

取球

贝叶斯公式

搜寻飞机【重点】

相互独立事件

证明

离散型随机变量及其概率分布

根据性质求常数

泊松分布

几何分布

超几何分布

分布函数

打靶

连续型随机变量及其概率密度函数

指数分布

打电话

正态分布

简单性质

定制门高

随机变量函数的分布【重点】

g(x)是连续型

基础题目

进阶题目

g(x)不是连续型

基础题目

进阶题目1

进阶题目2

二维随机变量

根据概率密度求分布函数和概率

连续场合的边缘分布概率

条件分布概率

相互独立的随机变量

两个随机变量的函数的分布【重点】

Z=X+Y形式

𝑴=𝐦𝐚𝐱(𝑿,𝒀)和𝑵=𝐦𝐢𝐧(𝑿,𝒀)的分布

数学期望

等车

判断是否成立

随机变量函数的数学期望

方差

正态分布之气缸与活塞

指数分布

协方差与相关系数


概率

有放回抽样和无放回抽样

箱中有100 件外形一样的同批次产品,其中正品60 件,次品40件。现按如下方式抽样:
(1)每次任取一件,观察后放回;
(2)每次任取一件,观察后不放回
问从这100 件产品中,任意抽取3件,其中有两件次品的概率。

【注意】不放回时的分母

出生月份

 一年中有12 个月,假定每人出生的月份是等可能的,任选四个人,求下列事件的概率:
(1)四个人出生的月份全不相同;
(2)四个人中至少有两个人出生的月份相同。

取球1

袋中有a个白球、b个红球,依次将球一只只摸出,不放回,求第k次摸到白球的概率(1≤k≤a+b)。

解: 设A={第k次摸到白球},由于并不关心第k次以后的取球结果,可设想将球编号,一只只抽取直至取出第k只球为止。

则基本事件总数是从a+b只编上号的球中选出k只球进行排列的排列种数,即n=A_{a+b}^{k};A发生意味着第k次取到白球。
此白球可能是a只白球中的任一只;而前k-1次取的球则可能是除此白球以外的其余a+b-1只中的任k-1只,故由乘法原理得,k_{A}=A_{a}^{1}\cdot A_{a+b-1}^{k-1}

所以,P(A)=\frac{k_{A}}{n}=\frac{A_{a}^{1}\cdot A_{a+b-1}^{k-1}}{A_{a+b}^{k}}=\frac{a\cdot (a+b-1)(a+b-2)\cdots \left ( a+b-k+1 \right )}{\left ( a+b \right )\left ( a+b-1 \right )\cdots \left ( a+b-k+1 \right )}=\frac{a}{a+b}

取球2

袋中有红、黄、白色球各一个,每次任取一个,有返回地取三次,求“取到的三球里没有红球或者没有黄球”的概率。

解:设A={没有红球},B={没有黄球},C={没有红球或没有黄球},则C=A∪B,故

P(C)=P(A∪B)=P(A)+P(B)-P(AB)=\frac{2^{3}}{3^{3}}+\frac{2^{3}}{3^{3}}-\frac{1^{3}}{3^{3}}=\frac{8+8-1}{27}=\frac{15}{27}=\frac{5}{9}

条件概率

存活概率

设一只乌龟存活60年的概率为0.89,能存活100年的概率为0.83,若现在这只乌龟已经60岁,则它能再存活40年的概率是多少?

解:设A={存活60年},B={存活100年}
根据题意可知:P(A)=0.89,P(B)=0.83
又因为B⸦A,所以P(AB)=P(B)=0.83
P(B|A)=P(AB)/P(A)=0.83/0.89

取球

从装有10 个白球和20 个红球的盒子中,第一次取出5 个小球以后,第二次又取出10 个球,令A={ 第一次取出5 个红球},B={第二次取出5 个红球和5 个白球},求P(AB)。

【注意】主要是知晓用条件概率的思想 

全概率公式

取球

有红,黄,蓝三个盒子,分别装有2白3黑,3白2黑和1白4黑的球。现有一均匀立方体,1面是红色,2面是黄色,3面是蓝色。抛掷此立方体,根据向上一面的颜色从对应颜色的盒中任取一球。求取到白球的概率。

解:令𝐵1={红色向上},𝐵2={黄色向上},𝐵3={蓝色向上}

可知:𝐵1∩𝐵2=∅,𝐵1∩𝐵3=∅,𝐵2∩𝐵3=∅并且𝐵1∪𝐵2∪𝐵3=Ω

则:𝐴={取到白球}={红盒取到白球}∪{黄盒取到白球}∪{蓝盒取到白球}𝑃(𝐴)=𝑃(𝐴𝐵1∪𝐴𝐵2∪𝐴𝐵3)=𝑃(𝐴𝐵1)+𝑃(𝐴𝐵2)+𝑃(𝐴𝐵3)=𝑃(𝐴|𝐵1)𝑃(𝐵1)+𝑃(𝐴|𝐵2)𝑃(𝐵2)+𝑃(𝐴|𝐵3)𝑃(𝐵3)=25/16+35/13+15/12=11/30

【注意】记得在解题时说明条件(即字母代表的事件含义事件两两互不相容

贝叶斯公式

搜寻飞机【重点】

飞机坠落在甲、乙、丙、丁四个区域之一,搜救部门判断其概率分别为0.3, 0.2, 0.4, 0.1. 现打算逐个搜索四个区域。若飞机坠落在甲、乙、丙、丁四区域内,被搜救部门发现的概率分别为0.8, 0.7, 0.75, 0.9。问:
(1) 首先应该搜索哪个区域?
(2) 若搜索丙区域后,未发现飞机,则此时飞机落入四个区域的概率又是多少呢?

解:设B1={飞机坠落在甲区域},B2={飞机坠落在乙区域},B3={飞机坠落在丙区域},B4={飞机坠落在丁区域}A={首次搜索未在丙区域发现飞机}
(1) 𝑃𝐵1=0.3,𝑃(𝐵2)=0.2,𝑃(𝐵3)=0.4,𝑃(𝐵4)=0.1,则此时应先搜索丙区域
(2) 

【注意】在回答第1问时,没有考虑是否被发现,而是直接看飞机坠落区域的概率;在回答第2问时,考虑应该丙区域时的值与题目中不同,以及其他三个区域是乘1

相互独立事件

证明

设𝐴,𝐵是两个随机事件,且0<𝑃(𝐴)<1,,问:𝐴,𝐵是否相互独立?

【注意】公式的使用条件以及P(BA/)=P(B)-P(AB)

离散型随机变量及其概率分布

根据性质求常数

若随机变量X的概率分布律为,求常数c。
提示:

 解:

 【注意】最终的结果与泊松分布相同,这里主要是为了证明泊松分布的规范性。 

泊松分布

设每分钟通过某交叉路口的汽车流量𝑋服从泊松分布,一分钟内无车辆通过与恰有一辆车通过的概率相同,求一分钟内至少有两辆车通过的概率. 

解:设𝑋~𝑃(𝜆).由题意知𝑃{𝑋=0}=𝑃{𝑋=1},即,λ=1.一分钟内至少有两辆车通过的概率为𝑃{𝑋≥2}=1−𝑃{𝑋=0}−𝑃{𝑋=1}=1−2𝑒^(−1)≈0.2642。

几何分布

公式见本专栏的文章“概率论与数理统计_知识总结之概率论部分”中“相关知识”的“几种重要的离散型随机变量的分布

设某人射击的命中率为0.45,求他在第奇数次射击时首次击中目标的概率。

解:

【注意】主要是要清楚这个情况满足几何分布,并记得几何分布的表达式

超几何分布

甲、乙两箱装有同种产品,甲箱中有合格品与次品各3件,乙箱中总共只有3件合格品.今从甲箱中任取3件产品放入乙箱,求乙箱中次品数的分布律.

解:乙箱中出现的次品数𝑋即为从甲箱中取出的3件产品中含有的次品数,它服从参数为𝑁=6,𝑀=3,𝑛=3的超几何分布,即𝑋的分布律为

分布函数

打靶

一个靶子是半径为2米的圆盘,设击中靶上任一同心圆盘上的点的概率与圆盘的面积成正比,并设射击均能中靶,以X表示弹着点与圆心的距离,求随机变量X的分布函数。

解:

1)当𝑥<0时,{𝑋≤𝑥}是不可能事件,𝐹(𝑥)=𝑃{𝑋≤𝑥}=0

2)当𝑥≥2时,{𝑋≤𝑥}是必然事件,𝐹(𝑥)=𝑃{𝑋≤𝑥}=1

3)当0≤𝑥<2时,由题意,𝑃{0<𝑋≤𝑥}=𝑘*𝜋*𝑥^2,𝑘为比例系数因{0≤𝑋≤2}是必然事件,有1=𝑃{0≤𝑋≤2}=𝑘*𝜋*2^2,得𝑘=1/4𝜋

𝑃{0≤𝑋≤𝑥}=𝑥^2/4

𝐹(𝑥)=𝑃{𝑋≤𝑥}=𝑃{−∞<𝑋<0}+P{0≤𝑋≤𝑥}=𝑥^2/4

连续型随机变量及其概率密度函数

指数分布

打电话

设打一次电话所用的时间X(单位:分钟)是以𝜆=1/10为参数的指数随机变量。如果某人刚好在你前面走进公共电话亭,求:
1)你需等待10分钟到20分钟之间的概率;
2)若已经等了10分钟,还需再等10分钟的概率。

解:概率密度函数为

【注意】主要是第(2)问中  P{X>20|X>10}=P{X>10}   要理解,理解后在这里可以看出指数函数具有无记忆性。

正态分布

简单性质

已知𝑋~𝑁(2,𝜎^2),且𝑃{2<𝑋<4}=0.3,求𝑃{𝑋<0}。

解:

法一:

法二:已知他为正态分布且关于y=2对称,则P{0<X<2}=P{2<X<4}=0.3,则有𝑃{𝑋<0}=0.5-P{0<X<2}=0.2

定制门高

公共汽车的车门是按男子与车门碰头的机会在0.01以下来设计的. 设男子身高X 服从参数为μ=172cm, σ=6 的正态分布,即X~N(172,36)。问车门的高度该如何设计。

解:设车门的高度为ℎ𝑐𝑚。

按设计要求需满足𝑃{𝑋≥ℎ}<0.01或者𝑃{𝑋<ℎ}≥0.99

因为𝑋~𝑁(172,36),则𝑃{𝑋<ℎ}=𝛷( (ℎ−172) /6)≥0.99查表有𝛷(2.33) = 0.9901 >0.99,故(h-172)/6=2.33 即h=172+6×2.33=186cm

故设计车门高度为186cm时,可使男子与车门顶碰头的机会不大于0.01。

随机变量函数的分布【重点】

g(x)是连续型

基础题目

设𝑋~𝑁(0,1),求𝑌=|𝑋|的概率密度。

解:𝐹𝑌(𝑦)=𝑃{𝑌≤𝑦}=𝑃{|𝑋|≤𝑦},当𝑦≤0时,𝐹𝑌(𝑦)=0;当𝑦>0时,𝐹𝑌(𝑦)=𝑃{−𝑦≤𝑋≤𝑦}=Φ(𝑦)−Φ(−𝑦),所以𝑌=𝑋的概率密度为

【注意】在求函数分布时注意大小写以及转化

【原理】

进阶题目

设随机变量𝑋的概率密度为,求𝑌=𝑋^2的概率分布.

【注意】这里主要是看随机变量X,Y之间的变化关系,然后代入的值也需要注意

【原理】

g(x)不是连续型

基础题目

设随机变量𝑋~𝑈(−1,2),,求𝑌的概率分布。

解:显然𝑌是离散型变量,𝑌的分布律为:

𝑃{𝑌=−1}=𝑃{𝑋<0}=1/3,

𝑃{𝑌=0=}𝑃{𝑋=0}=0,

𝑃{𝑌=1}=𝑃{𝑋>0}=2/3.

进阶题目1

 设随机变量𝑋~𝐸(1),,求𝑌的概率分布

解:

分析:𝑔不是连续函数,但函数关系表明,𝑌不取离散值,所以𝑌是连续型随机变量.又因为𝑋的取值大于0,所以𝑌的取值区间为0,2和4,+∞.另外,虽然𝑔可以分段求导数,但在𝑋的取值区间导数不恒大于0或小于0,所以定理1公式不能用.使用一般方法:先求出𝑌的分布函数,再求导数得𝑌的概率密度.

【注意】注意X和Y的相互转化,同时注意概率的非负性

进阶题目2

设随机变量𝑋的概率密度为,求𝑌的概率分布.

解:

显然𝑌既不是离散型变量也不是连续型变量,所以𝑌的概率分布为分布函数。

由函数关系及𝑋的取值范围可知,𝑌的取值区间为1,2,且当𝑦<1,𝐹𝑌(𝑦)=0;当𝑦≥2,𝐹𝑌(𝑦)=1;

二维随机变量

根据概率密度求分布函数和概率

设二维随机变量(𝑋,𝑌)的概率密度为,求:
1)求分布函数𝐹(𝑥,𝑦);
2)求概率𝑃{𝑌≤𝑋}。

解:

【注意】第(1)问分布律的积分上限为x或y,结果包含x或y,第(2)问的积分的上限与题目要求相关

连续场合的边缘分布概率

设随机变量𝑋,𝑌的概率密度是
求:1)c的取值,2)𝑋和𝑌的边缘概率密度。

解:

注意】在求连续型随机变量的边缘密度时,往往要求联合密度在某区域上的积分。当联合密度函数是分段表示的时候,在计算积分时应特别注意所求范围、积分限以及微分元素

条件分布概率

设( X,Y )服从单位圆上的均匀分布,概率密度为 ,则求𝑓𝑌|𝑋(𝑦|𝑥)。

解:

注意】注意随机变量的取值范围以及所对应的量,注意条件分布概率的计算方式。

相互独立的随机变量

设(𝑋,𝑌)的概率密度为,其他问𝑋和𝑌是否相互独立?

解:

图示

注意】要注意X和Y的范围

两个随机变量的函数的分布【重点】

Z=X+Y形式

若𝑋和𝑌独立,具有共同的概率密度,求𝑍=𝑋+𝑌的概率密度。

解:

图示(注意纵坐标的变量是z而不是y)

 

𝑴=𝐦𝐚𝐱(𝑿,𝒀)和𝑵=𝐦𝐢𝐧(𝑿,𝒀)的分布

设系统L 由两个相互独立的子系统连接而成,连接的方式分别为(i) 串联,(ii) 并联,(iii) 备用(当系统𝐿1损坏时,系统𝐿2开始工作) ,如下图所示

设𝐿1,𝐿2的寿命分别为𝑋,𝑌,已知它们的概率密度分别为:

其中𝛼>0,𝛽>0且𝛼≠𝛽,试分别就以上三种连接方式写出𝐿的寿命𝑍的概率密度。

数学期望

等车

按规定,某车站每天8:00~9:00 , 9:00~10:00 都恰有一辆客车到站,但到站时刻是随机的,且两者到站的时间相互独立。其规律为:
 ,
现有一旅客8:20到车站,求他候车时间的数学期望。

解:设旅客的候车时间为X (以分计),其分布律为

上表中例如:𝑃{𝑋=70}=𝑃(𝐴𝐵)=𝑃(𝐴)𝑃(𝐵)=1/6×3/6,其中𝐴为事件“第一班车8:10到站”,𝐵为事件“第二班车9:30到站”。

候车时间的数学期望为:

注意】题目中的概率可以看成是每小时内对应时刻所对应的概率,特别留意50/70/90分钟的分布律的计算

判断是否成立

设随机变量𝑋服从柯西分布,其概率密度为,试判断𝐸(𝑋)是否存在?

解:

注意】其实题目中说明了“随机变量𝑋服从柯西分布”,根据定义有,可知其实E(X)是不存在的;

同时,在检验过程中,我们要知道,数学期望存在的条件是数学期望绝对收敛

随机变量函数的数学期望

设二维连续型随机变量(𝑋,𝑌)的概率密度为
(1)求系数𝐴,(2)求𝐸(𝑋),𝐸(𝑋𝑌).

 解:

注意】问题(2)的公式是考点,需要留心

方差

正态分布之气缸与活塞

设活塞的直径(以㎝计)𝑋∼𝑁(22.40,0.03^2),气缸的直径𝑌∼𝑁(22.50,0.04^2),𝑋,𝑌相互独立。任取一只活塞和一只气缸,求活塞能装入气缸的概率。

解:由题意知,要求𝑃{𝑋<𝑌}=𝑃{𝑋−𝑌<0}而𝑋−𝑌∼𝑁(−0.10,0.0025)

指数分布

设随机变量𝑋服从参数为𝜆的指数分布,求。 

解:

协方差与相关系数

设𝑋,𝑌是两个随机变量,已知𝐷(𝑋)=1,𝐷(𝑌)=4,𝐶𝑜𝑣(𝑋,𝑌)=1,记𝜉=𝑋−2𝑌,𝜂=2𝑋−𝑌,试求𝜌𝜉𝜂。

解:𝐷(𝜉)=𝐷(𝑋−2𝑌)=𝐷(𝑋)+4𝐷(𝑌)−4𝐶𝑜𝑣(𝑋,𝑌)=1+4×4−4×1=13

𝐷(𝜂)=𝐷(2𝑋−𝑌)=4𝐷(𝑋)+𝐷(𝑌)−4𝐶𝑜𝑣(𝑋,𝑌)=4×1+4−4×1=4

𝐶𝑜𝑣(𝜉,𝜂)=𝐶𝑜𝑣(𝑋−2𝑌,2𝑋−𝑌)=2𝐶𝑜𝑣(𝑋,𝑋)−4𝐶𝑜𝑣(𝑌,𝑋)−𝐶𝑜𝑣(𝑋,𝑌)+2𝐶𝑜𝑣(𝑌,𝑌)=2𝐷(𝑋)−5𝐶𝑜𝑣(𝑋,𝑌)+2𝐷(𝑌)=2×1−5×1+2×4=5

  • 4
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
概率论与数理统计是数学非常重要的一门学科,它研究的是随机事件的发生规律以及通过概率的方法对随机数据进行统计分析。 在概率论的题型,常见的有求解概率的问题,如求事件发生的概率、条件概率以及多次试验后的概率等。例如,某班级有男生40人,女生60人,现从班级随机抽取一人,求抽到男生的概率。解决这个问题可以先计算男生的人数与总人数的比例,即40/100=0.4,所以抽到男生的概率为0.4。 另外还有排列组合的问题,如从一副扑克牌随机抽取5张牌,求出现顺子的概率。解决这个问题需要先计算出一副扑克牌顺子的可能情况共有多少种,再除以总的可能情况。 数理统计的题型主要包括参数估计和假设检验。在参数估计方面,常见的题目是根据样本数据估计总体参数的值。例如,从某个城市随机抽取1000名居民的身高数据,根据这个样本数据计算出城市居民的平均身高。在假设检验方面,常见的题目是根据给定的样本数据判断关于总体参数的假设是否成立。例如,某种电子产品的平均使用寿命宣称为10000小时,现在通过抽取一批产品进行测试,测试结果显示平均使用寿命为9500小时,需进行假设检验来判断该产品的平均使用寿命是否满足宣称值。 总之,概率论与数理统计的题型很多,但核心思想是通过概率的计算和统计方法来揭示随机事件的规律以及对随机数据进行准确的分析和判断。这些题目的解答需要运用概率论和数理统计的相关理论和方法,进行具体的计算和推理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值