这篇文章主要是介绍一些简单的例题介绍,其实还有知识介绍,可以见本专栏的文章“概率论与数理统计_知识总结之概率论部分”
随机变量的范围特别重要
目录
概率
有放回抽样和无放回抽样
箱中有100 件外形一样的同批次产品,其中正品60 件,次品40件。现按如下方式抽样:
(1)每次任取一件,观察后放回;
(2)每次任取一件,观察后不放回
问从这100 件产品中,任意抽取3件,其中有两件次品的概率。
【注意】不放回时的分母
出生月份
一年中有12 个月,假定每人出生的月份是等可能的,任选四个人,求下列事件的概率:
(1)四个人出生的月份全不相同;
(2)四个人中至少有两个人出生的月份相同。
取球1
袋中有a个白球、b个红球,依次将球一只只摸出,不放回,求第k次摸到白球的概率(1≤k≤a+b)。
解: 设A={第k次摸到白球},由于并不关心第k次以后的取球结果,可设想将球编号,一只只抽取直至取出第k只球为止。
则基本事件总数是从a+b只编上号的球中选出k只球进行排列的排列种数,即
;A发生意味着第k次取到白球。
此白球可能是a只白球中的任一只;而前k-1次取的球则可能是除此白球以外的其余a+b-1只中的任k-1只,故由乘法原理得,。
所以,
取球2
袋中有红、黄、白色球各一个,每次任取一个,有返回地取三次,求“取到的三球里没有红球或者没有黄球”的概率。
解:设A={没有红球},B={没有黄球},C={没有红球或没有黄球},则C=A∪B,故
P(C)=P(A∪B)=P(A)+P(B)-P(AB)=
条件概率
存活概率
设一只乌龟存活60年的概率为0.89,能存活100年的概率为0.83,若现在这只乌龟已经60岁,则它能再存活40年的概率是多少?
解:设A={存活60年},B={存活100年}
根据题意可知:P(A)=0.89,P(B)=0.83
又因为B⸦A,所以P(AB)=P(B)=0.83
P(B|A)=P(AB)/P(A)=0.83/0.89
取球
从装有10 个白球和20 个红球的盒子中,第一次取出5 个小球以后,第二次又取出10 个球,令A={ 第一次取出5 个红球},B={第二次取出5 个红球和5 个白球},求P(AB)。
【注意】主要是知晓用条件概率的思想
全概率公式
取球
有红,黄,蓝三个盒子,分别装有2白3黑,3白2黑和1白4黑的球。现有一均匀立方体,1面是红色,2面是黄色,3面是蓝色。抛掷此立方体,根据向上一面的颜色从对应颜色的盒中任取一球。求取到白球的概率。
解:令𝐵1={红色向上},𝐵2={黄色向上},𝐵3={蓝色向上}
可知:𝐵1∩𝐵2=∅,𝐵1∩𝐵3=∅,𝐵2∩𝐵3=∅并且𝐵1∪𝐵2∪𝐵3=Ω
则:𝐴={取到白球}={红盒取到白球}∪{黄盒取到白球}∪{蓝盒取到白球}𝑃(𝐴)=𝑃(𝐴𝐵1∪𝐴𝐵2∪𝐴𝐵3)=𝑃(𝐴𝐵1)+𝑃(𝐴𝐵2)+𝑃(𝐴𝐵3)=𝑃(𝐴|𝐵1)𝑃(𝐵1)+𝑃(𝐴|𝐵2)𝑃(𝐵2)+𝑃(𝐴|𝐵3)𝑃(𝐵3)=25/16+35/13+15/12=11/30
【注意】记得在解题时说明条件(即字母代表的事件含义和事件两两互不相容)
贝叶斯公式
搜寻飞机【重点】
飞机坠落在甲、乙、丙、丁四个区域之一,搜救部门判断其概率分别为0.3, 0.2, 0.4, 0.1. 现打算逐个搜索四个区域。若飞机坠落在甲、乙、丙、丁四区域内,被搜救部门发现的概率分别为0.8, 0.7, 0.75, 0.9。问:
(1) 首先应该搜索哪个区域?
(2) 若搜索丙区域后,未发现飞机,则此时飞机落入四个区域的概率又是多少呢?
解:设B1={飞机坠落在甲区域},B2={飞机坠落在乙区域},B3={飞机坠落在丙区域},B4={飞机坠落在丁区域}A={首次搜索未在丙区域发现飞机}
(1) 𝑃𝐵1=0.3,𝑃(𝐵2)=0.2,𝑃(𝐵3)=0.4,𝑃(𝐵4)=0.1,则此时应先搜索丙区域
(2)【注意】在回答第1问时,没有考虑是否被发现,而是直接看飞机坠落区域的概率;在回答第2问时,考虑应该丙区域时的值与题目中不同,以及其他三个区域是乘1
相互独立事件
证明
设𝐴,𝐵是两个随机事件,且0<𝑃(𝐴)<1,,问:𝐴,𝐵是否相互独立?
【注意】公式的使用条件以及P(BA/)=P(B)-P(AB)
离散型随机变量及其概率分布
根据性质求常数
若随机变量X的概率分布律为,求常数c。
提示: