经典随机图和广义随机图,都是简单地从一个给定集合中均匀随机抽取获得,区别是对于集合的界定有所不同。并展示了如何使用这种随机网络对经验网络的“显著性”进行评估,或者评估某些潜在的用于关系预测的因素。
但是传统的随机图过于简单,难以模拟“现实世界”特征。许多现实世界网络通常具有两个特点:(1)任意节点对之间的距离都相对较小,(2)同时传递性或聚类的等级相对较高。因此,通过引入某种简单的机制来产生这些特征,是当代网络建模的重要创新之一。
就经典随机图而言,它的平均路径长度确实很短,这意味着一对节点之间往往只有一条路径,而该路径只涉及少数几个边(即(1)成立)。但是,其缺乏一定程度的可传递性(但(2)不成立)。
增加传递性的一种方法是将所有节点排列在一个晶格中。最简单的格子是将节点排成一排,甚至将两端连接成一个圆,这样就不必担心边界。然后,如果每个节点只连接到附近的节点,那么结果网络中的传递性自然就会产生。由于连接到第三个节点的一对节点将趋向于靠近晶格中的每一个节点,因此很可能它们也已连接。即网络图中联通三元组的数量将相对较高,产生高传递性或聚类(即满足了(2))。然而,这样的晶格模型中由于所有连接都是两个附近的节点,因此需要很长的连