算法时间复杂度定义
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。
算法的时间复杂度,也就是算法的时间量度,记作T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。
常数阶
int a = 1 ,b = 3,t;
t = a;
a = b;
b = t;
虽然执行了4次 但其没有最高阶其n为定值3所以时间复杂度为O(1)
无论执行多少条语句给定n的值其时间复杂度就为O(1)
线性阶
for(int i = 0;i<n;i++){
//时间复杂度为o(1)的程序步骤序列
}
时间复杂度为o(n),因为循环体中的代码要执行n次
平方阶
for(int i = 0;i<n;i++){
for(int j = 0;j<n;j++){
//时间复杂度为o(1)的程序步骤序列
}
}
外层循环执行n次,内层循环执行n次所以时间复杂度为O(n*n)即O(n²)
对数阶
int count = 1;
while (count < n){
count *= 2;
//时间复杂度为O(1)的程序步骤序列
}表示有多少个2相乘会大于n,即2的x次方等于n,得log2n。所以时间复杂度为O(log2n)。
常用的时间复杂度
常用的时间复杂度排序
空间复杂度
算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n) = O(f(n)),其中,n为问题规模,f(n)为语句关于n所占存储空间的函数。
算法效率(时间复杂度及空间复杂度)
最新推荐文章于 2023-04-26 12:55:38 发布