LeeCode热题(Medium)
Solution43字符串相乘、Solution204计数质数、Solution260只出现一次的数字Ⅲ、Solution422数组中的重复数据、Solution433最小基因变化、Solution560和为K的子数组、Solution1367二叉树中的列表、面试题04.06后继者、
Solution43字符串相乘
给定两个以字符串形式表示的非负整数 num1 和 num2,返回 num1 和 num2 的乘积,它们的乘积也表示为字符串形式。
注意:不能使用任何内置的 BigInteger 库或直接将输入转换为整数。
示例 1:
输入: num1 = "2", num2 = "3"
输出: "6"
示例 2:输入: num1 = "123", num2 = "456"
输出: "56088"
class Solution {
public String multiply(String num1, String num2) {
/*乘数 num1 位数为 MM,被乘数 num2 位数为 NN, num1 x num2 结果 res 最大总位数为 M+N
num1[i] x num2[j] 的结果为 tmp(位数为两位,"0x","xy"的形式),
其第一位位于 res[i+j],第二位位于 res[i+j+1]。
*/
if (num1.equals("0") || num2.equals("0")) {
return "0";
}
int[] res = new int[num1.length() + num2.length()];
for (int i = num1.length() - 1; i >= 0; i--) {
int n1 = num1.charAt(i) - '0';
for (int j = num2.length() - 1; j >= 0; j--) {
int n2 = num2.charAt(j) - '0';
int sum = (res[i + j + 1] + n1 * n2);
res[i + j + 1] = sum % 10;
res[i + j] += sum / 10;
}
}
StringBuilder result = new StringBuilder();
for (int i = 0; i < res.length; i++) {
if (i == 0 && res[i] == 0) continue;
result.append(res[i]);
}
return result.toString();
}
}
Solution204计数质数
给定整数 n ,返回 所有小于非负整数 n 的质数的数量 。
示例 1:
输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:输入:n = 0
输出:0
示例 3:输入:n = 1
输出:0
class Solution {
public int countPrimes(int n) {
//厄拉多塞筛法. 比如说求20以内质数的个数,首先0,1不是质数.2是第一个质数,
//然后把20以内所有2的倍数划去.2后面紧跟的数即为下一个质数3,
//然后把3所有的倍数划去.3后面紧跟的数即为下一个质数5,再把5所有的倍数划去.
if(n < 3) return 0;
boolean[] f = new boolean[n];//谁不行就给谁打叉
int count = n/2;//去除偶数个数
for(int i = 3; i * i < n; i+=2){
if(f[i]){
continue;
}
//每次加上两倍的i;
for(int j = i*i; j < n; j+=2*i){
if(!f[j]){
--count;
f[j] = true;
}
}
}
return count;
}
}
Solution260只出现一次的数字Ⅲ
给定一个整数数组
nums
,其中恰好有两个元素只出现一次,其余所有元素均出现两次。 找出只出现一次的那两个元素。你可以按 任意顺序 返回答案。
先全部异或一次, 得到的结果, 考察其的某个非0位(比如最高非0位), 那么只出现一次的两个数中, 在这个位上一个为0, 一个为1, 由此可以将数组中的元素分成两部分,重新遍历, 求两个异或值
class Solution {
public int[] singleNumber(int[] nums) {
int[] res = new int[2];
int diff = 0;
for(int i = 0;i < nums.length;i++){
diff ^= nums[i];
}
int tmp = diff &(-diff);
int ans = 0;
//重新遍历
for(int i = 0; i < nums.length; i++){
if((nums[i] & tmp) != 0){
ans ^= nums[i];
}
}
res[0] = ans;
res[1] = ans ^ diff;
return res;
}
}
Solution422数组中的重复数据
给你一个长度为 n 的整数数组 nums ,其中 nums 的所有整数都在范围 [1, n] 内,且每个整数出现 一次 或 两次 。请你找出所有出现 两次 的整数,并以数组形式返回。
你必须设计并实现一个时间复杂度为 O(n) 且仅使用常量额外空间的算法解决此问题。
有要求时间空间复杂度,那么只能原地修改数组
对数组下标动手,每个数最多出现两次且小于数组长度,则对(数值减一的下标)的值取反
亦或者对数值做偏移量
class Solution {
public List<Integer> findDuplicates(int[] nums) {
//用下标修改取反当前值表示有没有遇过当前这个数
List<Integer> res = new ArrayList<>();
for (int num : nums) {
if (nums[Math.abs(num) - 1] < 0) {
res.add(Math.abs(num));
} else {
nums[Math.abs(num) - 1] *= -1;
}
}
return res;
}
}
Solution433最小基因变化
基因序列可以表示为一条由 8 个字符组成的字符串,其中每个字符都是 'A'、'C'、'G' 和 'T' 之一。
假设我们需要调查从基因序列 start 变为 end 所发生的基因变化。一次基因变化就意味着这个基因序列中的一个字符发生了变化。
例如,"AACCGGTT" --> "AACCGGTA" 就是一次基因变化。
另有一个基因库 bank 记录了所有有效的基因变化,只有基因库中的基因才是有效的基因序列。给你两个基因序列 start 和 end ,以及一个基因库 bank ,请你找出并返回能够使 start 变化为 end 所需的最少变化次数。如果无法完成此基因变化,返回 -1 。
注意:起始基因序列 start 默认是有效的,但是它并不一定会出现在基因库中。
class Solution {
public int minMutation(String start, String end, String[] bank) {
// 1, start和end相同,则没有变异,-1
if (start == end) {
return -1;
}
// 把bank基因序列放入到map中
Set<String> cnt = new HashSet<String>();
// 如果bank中无end,则说明无法变异
for (String w : bank) {
cnt.add(w);
}
// 2,基因库总无end基因,无法变异
if (!cnt.contains(end)) {
return -1;
}
Queue<String> queue = new ArrayDeque<String>();
// 3,把需要变异的基因序列放入队列
queue.offer(start);
// visited.add(start);
int step = 0;
// 防止变回来
Set<String> visited = new HashSet<String>();
char[] keys = {'A', 'C', 'G', 'T'};
while (!queue.isEmpty()) {
step++;
// 一波一波走
int size = queue.size();
for (int i = 0; i < size; i++) {
String curr = queue.poll();
// 每一个序列都有3*8中变化的可能(一个8个字符,每个字符可以变换为另外3个字符,3*8)
// 八个字符,一个一个遍历
for (int j = 0; j < 8; j++) {
// 遍历看下是哪个字符,然后变异为其他字符
for (int k = 0; k < 4; k++) {
if (keys[k] != curr.charAt(j)) {
StringBuffer sb = new StringBuffer(curr);
sb.setCharAt(j, keys[k]);
String mutatedNxt = sb.toString();
if (!visited.contains(mutatedNxt) &&
cnt.contains(mutatedNxt)) {
if (mutatedNxt.equals(end)) {
return step;
}
queue.offer(mutatedNxt);
visited.add(mutatedNxt);
}
}
}
}
}
}
return -1;
}
}
Solution560和为K的子数组
给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。
示例 1:
输入:nums = [1,1,1], k = 2
输出:2
示例 2:输入:nums = [1,2,3], k = 3
输出:2
暴力解法
class Solution {
public int subarraySum(int[] nums, int k) {
int count = 0;
for(int i = 0; i < nums.length; i++){
int sum = 0;
for(int j = i; j < nums.length; j++){
sum += nums[j];
count += sum == k ? 1 : 0;
}
}
return count;
}
}
Solution1367二叉树中的列表
给你一棵以 root 为根的二叉树和一个 head 为第一个节点的链表。
如果在二叉树中,存在一条一直向下的路径,且每个点的数值恰好一一对应以 head 为首的链表中每个节点的值,那么请你返回 True ,否则返回 False 。
一直向下的路径的意思是:从树中某个节点开始,一直连续向下的路径。
class Solution {
public boolean isSubPath(ListNode head, TreeNode root) {
if(root == null){
return false;
}
return isSubPathFromRoot(head, root) ||
isSubPath(head, root.left) ||
isSubPath(head,root.right);
}
//从根结点往下找,避免锁定根结点而根结点的左右子树不符合顺序
//如果root.val和head.val值相同,可以判断head.next 和 root.left以及root.right是否相同,
//直到链表递归到了尾部节点即head.next == null
private boolean isSubPathFromRoot(ListNode head, TreeNode root){
if(head == null){
return true;
}
if(root == null){
return false;
}
if(root.val == head.val){
return isSubPathFromRoot(head.next, root.left) ||
isSubPathFromRoot(head.next, root.right);
}
return false;
}
}
面试题04.06后继者
设计一个算法,找出二叉搜索树中指定节点的“下一个”节点(也即中序后继)。
如果指定节点没有对应的“下一个”节点,则返回null。
示例 1:
输入: root = [2,1,3], p = 1
2
/ \
1 3输出: 2
示例 2:输入: root = [5,3,6,2,4,null,null,1], p = 6
5
/ \
3 6
/ \
2 4
/
1输出: null
class Solution {
public TreeNode inorderSuccessor(TreeNode root, TreeNode p) {
if(root == null){
return null;
}
// 当前节点值小于等于目标值,那么当前目标值的后继者必然在右子树
if(p.val >= root.val){
return inorderSuccessor(root.right,p);
}
// 否则结果有可能是当前节点,或者在当前节点的左子树中
// 那么先去左子树找一下试试,找不到的话返回当前节点即是结果
TreeNode node = inorderSuccessor(root.left,p);
return node == null ? root : node;
}
}