Dijstra 算法本质——单调性路径问题

Dijstra 算法本质——单调性路径问题

最短路问题

我们一般用 dijstra 算法求解最短路,但是不能应用于负边权的图,我们会发现这个问题的两个特点:

1.最短路径一定是一条简单路径;

2.在图上走路径,路径长度是(非严格)单调递增的。

重点是第2点,它告诉了我们,当前离源点路径最短的点,最短路径一定确定了,不会被其他点更新,所以可以用它去更新其他点的最短路径。

最短瓶颈路问题

最短瓶颈路,就是求一条路径,使得路径上最长边最短。

最短瓶颈路可以用最小生成树,二分法,也可以使用 Dijstra算法。

与最短路相似,我们也发现两个特点:

1.最短瓶颈路一定是简单路径;

2.在图上走路径,路径上的最长边是非严格单调递增。

所以,我们也可以推导出,选择当前瓶颈路最短的一个点,保证它不会被其他点更新,所以就可以用它去更新其他点。

Dijstra算法本质

上述两个问题,都凸显了一个单调性,因为答案只会越来越大的,所以我们取出当前答案最小的一个节点 u u u,其他点答案比 u u u 大,绝对不会去更新 u u u,便能保证 u u u 当前是最优解,用它去更新其他点。

形式化讲,对于图上任意一条路径 P = ( u 1 , u 2 … u k ) P=(u_1,u_2\dots u_k) P=(u

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值