Dijstra 算法本质——单调性路径问题
最短路问题
我们一般用 dijstra 算法求解最短路,但是不能应用于负边权的图,我们会发现这个问题的两个特点:
1.最短路径一定是一条简单路径;
2.在图上走路径,路径长度是(非严格)单调递增的。
重点是第2点,它告诉了我们,当前离源点路径最短的点,最短路径一定确定了,不会被其他点更新,所以可以用它去更新其他点的最短路径。
最短瓶颈路问题
最短瓶颈路,就是求一条路径,使得路径上最长边最短。
最短瓶颈路可以用最小生成树,二分法,也可以使用 Dijstra算法。
与最短路相似,我们也发现两个特点:
1.最短瓶颈路一定是简单路径;
2.在图上走路径,路径上的最长边是非严格单调递增。
所以,我们也可以推导出,选择当前瓶颈路最短的一个点,保证它不会被其他点更新,所以就可以用它去更新其他点。
Dijstra算法本质
上述两个问题,都凸显了一个单调性,因为答案只会越来越大的,所以我们取出当前答案最小的一个节点 u u u,其他点答案比 u u u 大,绝对不会去更新 u u u,便能保证 u u u 当前是最优解,用它去更新其他点。
形式化讲,对于图上任意一条路径 P = ( u 1 , u 2 … u k ) P=(u_1,u_2\dots u_k) P=(u