"蔚来杯"2022牛客暑期多校训练营9-B Two Frogs
原题题面:https://ac.nowcoder.com/acm/contest/33194/B
题目大意
有 n ( 1 ≤ n ≤ 8000 ) n(1\le n\le 8000) n(1≤n≤8000)个荷叶排成一排,两只青蛙需要从第 1 1 1个荷叶跳到第 n n n个荷叶上。如果青蛙在第 i ( i < n ) i(i<n) i(i<n)个荷叶上,则其可以跳跃到 ( i , i + a i ] (i,i+a_i] (i,i+ai]区间的荷叶上。
两只青蛙每次跳跃会等概率随机选择一个合法的荷叶目的地,求他们以相同的跳跃次数跳跃到第 n n n个荷叶上的概率。
解题思路
设 d p i , j dp_{i,j} dpi,j表示调到第 i i i个荷叶需要 j j j次的概率。 d p i , j = ∑ k ∣ k + a k ≤ i d p k , j − 1 dp_{i,j}=\sum_{k|k+a_k\le i}dp_{k,j-1} dpi,j=∑k∣k+ak≤idpk,j−1。由于要枚举 i , j , k i,j,k i,j,k所需复杂度 O ( n 3 ) O(n^3) O(n3),超时。
发现 d p i , j dp_{i,j} dpi,j至 d p i + a i , j dp_{i+a_i,j} dpi+ai,j所得贡献相同,可以先差分标记贡献,再在用前求出前缀和,可将复杂度降到 O ( n 2 ) O(n^2) O(n2)。
代码实现
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=8005,mod=998244353;
int n,f[N][N],a[N],ans,fp[N];
int fpow(int x,int p){
int ret=1;
for(;p;x=(ll)x*x%mod,p>>=1)if(p&1)ret=(ll)ret*x%mod;
return ret;
}
int main(){
cin>>n;
for(int i=1;i<n;i++)cin>>a[i],fp[i]=fpow(a[i],mod-2);
f[1][0]=1,f[2][0]=-1;
for(int i=1;i<=n;i++){
for(int j=0;j<i;j++)f[i][j]=(f[i][j]+f[i-1][j])%mod;
for(int j=0;j<i;j++){
f[i+1][j+1]=((ll)f[i][j]*fp[i]%mod+f[i+1][j+1])%mod;
f[i+a[i]+1][j+1]=(f[i+a[i]+1][j+1]-(ll)f[i][j]*fp[i]%mod+mod)%mod;
}
}
for(int i=0;i<n;i++)ans=((ll)ans+(ll)f[n][i]*f[n][i]%mod)%mod;
cout<<ans;
}