1.函数拆分
任何一个有理函数分式都能化成真分式,若分式的分母为F(x)=(x-a)(x-b)这个分式不能再分解,则分式必能拆分,好比
和初高中学过的裂项很像,或者说列项是它的简化版(拆分的分子最高次比分母最高次要少一次)。
把复杂的分式拆分成几个简单的分式更便于积分,比如求下列函数的积分很难求,
转而求下列函数的积分将会十分的简单,只需使用到基本的积分公式。
对于这种函数 ,为了便于积分,拆成如下形式
而不是
因为要求积分又要对后一项进一步的拆分,增加工作量。
2.待定系数求法
1.构造方程组,先把拆分后的分式通分,再把通分后的分子与原函数相同次幂作比较,
不过一般比较复杂,对简单的分式好用。
2. 留数法
令x=1,先求出a,依照同样的方法可以求出b和c。
欢迎指出错误,这是高数新手写博客,纯粹为了锻炼自己。