迁移学习
文章平均质量分 86
一瞬にして失う
这个作者很懒,什么都没留下…
展开
-
解耦知识蒸馏(Decoupled Knowledge Distillation,DKD)论文解读
通过将经典的KD损失重新表述为两个部分,提供了一种解释logit蒸馏的新观点部分,即目标类知识蒸馏(TCKD)和非目标类知识精馏(NCKD)。分别研究和证明了这两部分的作用,发现KD的耦合公式限制了知识迁移的有效性和灵活性。原创 2022-12-11 16:09:20 · 2082 阅读 · 2 评论 -
HSAKD:分层自监督增广知识蒸馏
提出了一种用于KD的自监督增强任务,并利用设计良好的辅助分类器进一步传递从分层特征图中获得的丰富知识。在KD领域的标准图像分类基准上实现了SOTA性能。它可以指导网络学习语义识别任务的一般特征表示。原创 2022-09-18 20:30:54 · 873 阅读 · 0 评论 -
SSKD:自我监督知识蒸馏
提出了一个新的框架,称为SSKD,这是首次尝试将自我监督与知识蒸馏相结合。采用对比预测作为辅助任务,帮助从教师网络中提取更丰富的知识。设计了一种选择性迁移策略来抑制教师知识中的噪声。通过使用各种架构在CIFAR100和ImageNet上进行彻底的实验来检验我们的方法。SSKD可以使学生更接近老师,并在少量镜头和嘈杂标签场景下工作良好。原创 2022-09-17 13:01:49 · 2074 阅读 · 0 评论 -
MTKD-IIRC:增量隐式精化分类的多教师知识蒸馏
超类知识可能被子类知识占据。提出了一种多教师知识蒸馏(MTKD)策略来解决这个问题。使用初始模型(超类教师)和最后一个模型(普通教师)为我们的学生模型提取知识。此外,使用两个教师模型可能会导致IIRC中的冗余预测问题。提出了一种简单的Top-k预测约束机制,结合我们的MTKD策略(k-MTKD),以减少不必要的预测。原创 2022-09-08 19:49:01 · 671 阅读 · 0 评论 -
CA-MKD:置信多教师知识蒸馏
介绍了多教师知识蒸馏的预测和中间特征的置信感知机制。教师的置信度是基于他们的预测或特征与每个训练样本的可靠性识别的基本事实标签之间的相似度来计算的。在标签的指导下,我们的技术有效地整合了来自多个教师的不同知识,用于学生培训。原创 2022-09-06 15:34:52 · 1005 阅读 · 0 评论 -
基于桥蒸馏的高效低分辨率人脸识别
提出了一种新的桥蒸馏方法来解决资源有限的低分辨率人脸识别任务。该方法的核心是高效的师生框架,该框架依赖于新的跨数据集蒸馏和分辨率自适应蒸馏算法。该算法首先调整教师模型以保留高分辨率细节的区分性,然后使用它们监督学生模型的训练。...原创 2022-08-14 17:43:47 · 921 阅读 · 0 评论 -
MUDA:对齐特定域的分布和分类器以实现来自多源域的跨域分类
提出了一种多特征空间自适应网络(MFSAN),该网络通过学习多个域不变特征和来自多个源的分类器输出,同时对齐每对源域和目标域的特定域的分布。原创 2022-08-09 21:54:27 · 2857 阅读 · 0 评论 -
DDTL:远距离的域迁移学习
本文研究了一个新的DDTL问题,其中源域和目标域距离较远,但可以通过一些中间域连接。为了解决DDTL问题,提出了SLA算法,从中间域中逐渐选择未标记数据,以连接两个距离较远的域。原创 2022-08-03 22:31:45 · 1211 阅读 · 0 评论 -
M3SDA:用于多源域自适应的矩匹配
提出了M3SDA,将多个源域与目标域对齐。在交叉矩散度的框架下,推导了该方法有意义的误差界。原创 2022-07-30 13:38:43 · 2998 阅读 · 1 评论