蓝桥杯 印章

资源限制

时间限制:1.0s   内存限制:256.0MB

问题描述

  共有n种图案的印章,每种图案的出现概率相同。小A买了m张印章,求小A集齐n种印章的概率。

输入格式

  一行两个正整数n和m

输出格式

  一个实数P表示答案,保留4位小数。

样例输入

2 3

样例输出

0.7500

数据规模和约定

  1≤n,m≤20

通过输入确定了印章的图案个数n和所购买的印章数m

定义中间变量i j ;中间目前所集齐图案数量i;中间目前所购买印章数量j;

而每一种图案出现的概率为p;p=1/n

分情况讨论

当印章的图案个数n大于所购买的印章数m时:概率为0;永远也集不齐

当印章的图案个数n小于等于所购买的印章数m时:

        当目前只凑齐第一个图案时即i=1时:

                购买第一个印章时概率1.0;

                购买第二个印章时即第二个印章和第一个印章相同;概率就为1/n=p

                购买第三个印章时即第三个印章和前几个印章相同;概率就为1/n*1/n=p*p

                。。。。

                购买第j个印章时即第j个印章和前几个印章相同;概率就为(1/n)^(j-1)=p^(j-1)

          当目前只凑齐的图案不是第一个图案时 即i!=1时:

                刚刚买的印章有两种可以:

                        1.与之前买的相同

                                那么之前是有了i种而总共有n种;

                                所以第j种的概率为i/n即i*p;

                                那么有i个品种,买了j个的概率是有i个品种,买了j-1个的概率乘上i*p

                        2.与之前买的不同

                                同理

                                那么之前是有了i-1种而总共有n种;

                                所以第j种的概率为n-(i-1)/n即(n-(i-1))*p;

                                那么有i个品种,买了j个的概率是有i-1个品种,买了j-1个的概率乘上(n-(i-1))*p;

                而总概率就是他们两种情况相加即a[i][j]=a[i-1][j-1]*((n-(i-1))*1.0)*p+a[i][j-1]*(i*p);

#include<stdio.h>
int main() 
{
int n;
int m;
int i=1;
int j=1;
int k=1;
double p;
double a[21][21]={0.0};
scanf("%d %d",&n,&m);
p=1.0/n;
for(i=1;i<=n;i++)
{
	for(j=1;j<=m;j++)
	{
		
		if(i==1)
		{		
		a[i][j]=1.0;
			for(k=1;k<j;k++)
			{
				a[i][j]*=p;
			}
		}
		else
		{
		a[i][j]=a[i-1][j-1]*((n-(i-1))*1.0)*p+a[i][j-1]*(i*p);
		}
	}
}
printf("%.4lf",a[n][m]);
return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值