C语言实现二叉树的链式存储

实验目的

(1)能实现二叉树链式存储结构下的创建及遍历算法;
(2)能根据实际问题,设计二叉树存储结构并设计相应算法。

实验内容

(1)二叉树链式存储结构设计及二叉树创建和遍历算法;
(2)实现二叉树中树叶结点的输出和左右子树互换算法。

实验要求

构造一棵二叉树,并进行遍历
要求:

  1. 二叉树的构造
    可以输入树的先根序遍历序列,然后进行构造;
    也可采用按层次构造二叉树的方法。

  2. 实现二叉树访问的算法(先序、中序、后序)

  3. 实现二叉树中树叶结点的输出和左右子树互换算法

注意:
在构造二叉树,输入树的先根序的时候,树的先根序必须是完整的
例如下图的二叉树,在采用先根序构造时,输入的先根序序列为eba###f##
在这里插入图片描述

总体上是对完成本次实验题目的设计过程的论述。题目的设计思路、设计过程、相关算法等进行论述说明。包括设计说明(文字)、代码或主要代码及运行结果等。

实验过程

设计思路
  • 叶子节点的输出:当遍历到该节点的后继节点为空,则输出该节点;
    左右子树互换算法,只要当前节点不为空,就交换该节点的左右孩子。
代码实现解释
  • 定义二叉树节点,成员有节点信息和左右孩子。

  • 定义一个节点输出函数。

  • 创建先序遍历存储的二叉树,并返回根节点的指针,采用递归的方式,当输入#返回NULL。

  • 递归前序遍历,先打印根节点再打印左右孩子节点。

  • 递归中序遍历,先打印左孩子节点再打印右孩子节点。

  • 递归后序遍历,先打印左孩子节点再有孩子节点,最后根节点。

  • 递归打印叶子节点,判断树是否为空,不为空,看当前节点的左右孩子是否均为空,是打印。

  • 递归交换左右子树,直到当前节点为空。

代码实现如下
#include <stdio.h>
#include <stdlib.h>

typedef char DataType;

//定义二叉树节点 
struct node 
{
	DataType data;
	struct node *lchild, *rchild;
};

typedef struct node Bitree;
typedef struct node *Ptree;


//输出节点数据
void print(DataType d)
{
	printf("%c ", d);
}


//创建二叉树,并返回根结点指针 
Ptree createBitree()
{
	DataType data;
	Ptree root=(Ptree )malloc(sizeof(struct node));
	data=getchar();
	
	if(data=='#') 
		return NULL;
	else								//按照先序遍历进行存储 
	{
		root->data=data;
		root->lchild=createBitree();
		root->rchild=createBitree();
	}
	return root;
}


// 递归先序遍历二叉树,传入二叉树根结点指针 
int preOrder(Ptree t)
{
	 
	if(t==NULL) return 1;
	
	print(t->data);			// DLR遍历 
	preOrder(t->lchild);
	preOrder(t->rchild);
}

// 中序遍历 
int midOrder(Ptree t)
{
	if(t==NULL) return 1;

	midOrder(t->lchild);
	print(t->data);			// LDR遍历 
	midOrder(t->rchild);
}
 

//后序遍历 
int subsequentOrder(Ptree t)
{
	if(t==NULL) return 1;
	

	midOrder(t->lchild);
	midOrder(t->rchild);
	print(t->data);			// LRD遍历 
}


//打印叶子节点 
int printLeaves(Ptree t)
{
	if(t==NULL) return 0;
	
	if((t->lchild==NULL) && (t->rchild==NULL)) printf("%c ", t->data);
	
	else
	{
		printLeaves(t->lchild);
		printLeaves(t->rchild);
	}
} 

int ChangeLR(Ptree t)
{
	Ptree p;//=(Ptree )malloc(sizeof(struct node)); 不用动态分配也可以 
	if(t==NULL) return;

	p=t->lchild;
	t->lchild=t->rchild;
	t->rchild=p;
	
	ChangeLR(t->lchild);
	ChangeLR(t->rchild);
}


int main()
{
	Ptree t;
	int i=0;
	t=createBitree();	 	//先序遍历进行存储 

	printf("前序遍历: ");
	preOrder(t);
	printf("\n");
	
	printf("中序遍历: ");
	midOrder(t);
	printf("\n");

	printf("后序遍历: ");
	subsequentOrder(t);
	printf("\n");

	printf("打印叶子节点: ");
	printLeaves(t);      //成功打印叶子节点 
	printf("\n");

	printf("左右子树交换后的前序遍历: ");
	ChangeLR(t);
	preOrder(t);
	printf("\n");
	
	return 0;
}

// 输入样例eba###f## 

输出结果如下

在这里插入图片描述
了解每一行代码,理清思路,很有用哟
喜欢那就点个赞吧,嘿嘿~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值